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I. INRTODCUCTION

The postdoctoral fellowship grant was awarded to the principal investigator (PI) for the period of
April 1, 2003-March 31, 2005. The purpose of this investigation is to introduce a framework for
including model parameter uncertainties into prostate Intensity Modulation Radiation Therapy
(IMRT) dose optimization so that biological model-based objective function can be used with
improved confidence level. The specific aims of the proposal are: (1) to establish a mathematical
formalism to incorporate model parameter uncertainty into IMRT optimization; (2) to identify the
clinically relevant biological model parameter variance range; and (3) to study the prostate cancer
treatment planning including the model uncertainty information. Under the generous support from
the U.S. Army Medical Research and Materiel Command (AMRMC), the PI has contributed
significantly to the radiation treatment of prostate cancer. Several conference abstracts and refereed
papers have been resulted from the support. The fellowship also allowed the PI to obtain research
training in prostate cancer while accomplishing the proposed projects. The preliminary data and
research opportunity gained under the support of this grant has enabled the PI to obtain offers of an
assistant professor in the Department of Radiation Oncology at a few prestigious universities.

II. RESEARCH AND ACCOMPLISHMENTS

Adenocarcinoma of the prostate is the most common malignancy in men in the western
countries. Options for active management of organ-confined prostate cancer include radical
prostatectomy and definitive radiotherapy with either external beams or interstitial brachytherapy.
Intensity Modulated Radiation Therapy (IMRT) is quickly replacing conventional techniques for the
treatment of prostate cancer. Most IMRT optimization systems at present use dose and/or dose
volume-based objective functions', which guide the IMRT planning by imposing a penalty
according to the difference between the computed and prescribed doses. A well-known drawback of
the dose-based inverse planning is that the nonlinear dose response of tumor or normal structures is
not fully considered. A number of mathematical models have been developed over the years to
better describe the biological effect of radiation and considerable works have also been done to use
these biological models to construct more meaningful objective functions for therapeutic dose
optimization 2. Generally speaking, radiobiological formalism involves the use of model parameters
that are of considerable uncertainty3 6. For instance, the radiosensitivity of Webb's TCP model
varies from 0.157 Gy1 to 0.090 Gy- when model parameters were fit to 103 patients' data3 . In order
to improve the dose distribution and the outcome of prostate cancer radiotherapy, we implemented a
mathematical formalism to include all types of model parameter uncertainties to the dose
optimization in the first part of this project. Based on this result, in second and third parts of work,
we developed a biological optimization framework and incorporated the model parameter
uncertainties into IMRT optimization based on the clinical outcome knowledge. We also
implemented an algorithm to optimize the time-dose-fractionation for the radiation treatment of
prostate cancer with inclusion of the biological model parameter uncertainties.

An important issue in inverse treatment planning is how to formalize the clinical goals to
objectively evaluate the figures of merit of different IMRT plans. Over the last two decades,
attempts have been made by many researchers to capture the main feature(s) of the dose volume
effects. A power law model represents one of the successful techniques in dealing with the dose-
volume effects of sensitive structures7 . In this model an equivalent dose uniformly irradiating the
whole organ, Deq, can be used to represent the situation in which a fractional partial volume, v, is
irradiated to a dose, D, by a simple power law model: Deq=vVIID. A remarkable characteristic of this
model is that, although only a single organ-specific parameter, n, is used, clinical and biological data
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has shown that this power law holds well at low complication levels 7' 8. Based on this relation,
Mohan et a19 introduced the concept of effective dose to represent a non-uniform dose distribution in
a sensitive structure. Kutcher and Burman1° applied the same power model independently to each
volume element of the histogram and introduced the concept of effective volume to reduce the DVH
of an inhomogeneous dose distribution in a sensitive structure to a uniform dose distribution.
Following their study, in this project we define the effective volume (AVeff)i for a voxel i with
volume AVand dose D,(i) as follows

(AVeff) =AV(DC(i)/Dr,,f)11  (1)

and extend this concept to handle the voxels in the tumor target, where n is an organ-dependent
parameter and Dref is the reference dose. For a sensitive structure, n is a small positive number
(O<n<l) and the value of parameter n reflects the architecture (serial or parallel) of the sensitive
structure. For a target, n should be assigned with a small negative value (-l<n<O).

The objective function, f, expressed as a function of the effective volume in the voxel
domain for an organ should take the form of

f = f({(AVýf),}), (2)

A more general form of inverse planning objective function can be written as a hybrid of the
dose-volume based and the dose-based functions. In this situation, the overall objective function of
the system takes the form of

IF Inr 11.}lD,(i)_ DO •i k,
+= {l + Y. [D{ (i)/D+ rj ]) D/ (D1)(

a'=1 No" t=l

where t, and s, are the numbers of targets and sensitive structures, Do" (i) is the prescription dose in

target voxel i, subscripts T and u represent target T and sensitive structure a, N•, N., r•, ra n., nu, Dref,
D,ref, k•, and k, represent the total numbers of voxels, structure specific importance factors, n
parameters, reference doses, power of dosimetric deviation from the specified criteria for target T"

and sensitive
structure a,
respectively. The

factor

SD, (i) - Dýj (i)l' for

a Axial I Axial 2 Sagittal target or D,(i)k, for

a sensitive structure
represents the
contribution from
dosimetric deviation

6o~y from the ideal
G W, situation. If the k.

(b) Axial I Axial 2 Sagittal and k, are set to
zero, the objective

Fig. 1. Comparison of the isodose distributions of the two prostate IMRT plans: (a) the function becomes

conventional dose-based approach; (b) the newly proposed approach. The results on two purely d e-ome

transverse slices and a sagittal slice are shown. purely dose-volume
driven. In particular,
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if we set k, to zero and k, to a non-zero value, the objective function for a target becomes a hybrid of
dose-volume and dose based, whereas the objective functions for critical structures remain to be
purely dose-volume based. On the other hand, when all the n parameters in Eq. (4) are set to be +00,
no dose-volume effects are considered and Eq. (4) is reduced to the conventional dose-based
objective function.

The proposed optimization algorithm is used
to study 30 prostate cancer cases and the results

100 -were compared with that of the conventional dose
90 ,based IMRT optimization technique. Figures 1 and 2
80 '

-. Rectum Target ' are the results of the two IMRT plans obtained using
70 

]re,o .. the proposed and conventional techniques for a
E o0 typical prostate case. Figure 1 compares the isodose

40 , distributions in two transverse slices and a sagittal
30 •slice for the two plans. The DVHs of the target and
20

10 e hsensitive structures are plotted in figure 2, in which

0 10em 2ra 0 head 0 00 the solid and dashed lines represent the DVHs
D os 20 30 40 60 70 80 obtained using the new and conventional
Dose (Gy) approaches, respectively. It is found that, for

100..comparable target coverage, the new inverse
90 '- Bladder planning technique greatly improves the critical
80

70 structure sparing, especially the rectum sparing.
60 eFurthermore, it is intriguing that the non-sensitive

E 5 Femoral head (L structure normal tissue also receives fewer doses in
4,0 comparison with that of the dose-based optimization.

Our results suggest that the improvement in the
20 critical structure sparing is achieved not at the cost
10 - of higher target dose inhomogeneity, which is

0 10 20 30 40 50 60 70 80 commonly seen in IMRT plan optimization. The
Dose (Gy) calculated NTCPs of rectum, bladder and femoral

Fig. 2. Comparison of Dose Volume heads for both IMRT plans are listed in table I.
Histograms (DVHs) of the prostate IMRT plans
obtained using the proposed approach (solid According to the table, it is seen that the NTCPs of
curves) and the conventional dose-based the sensitive structures are improved significantly.
approach (dash lines).

For the rectum, for example, the Table I Comparison of the normal tissue complication probabilities

NTCP is reduced from 0.45% to (NTCP) for the two IMRT plans for the prostate case

0.03%.
NTCP (%) The dose-based IMRT plan The proposed IMRT plan

We also Bladder 0.017 0.00030
implemented a method Rectum 0.45 0.029
for optimizing the Femoral head (R) 0.000076 0.0000038
treatment protocols for Femoral head (L) 0.000032 0.000015
prostate cancer with the
biological model parameter uncertainties included. The study starts from an extended LQ model
with inclusion of the "4-R's"''' 12. The optimum dose-time-fractionation is then formulated as a
problem of searching for the highest tumor biologically effective dose (BED) while keeping the
normal tissue BED constant. A salient feature of the technique is that various influencing
radiobiology parameters, such as the redistribution and reoxygenation, are incorporated naturally
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during the optimization process. The optimized tumor BED as a function of the overall treatment
time for different potential doubling time, Tpd (15, 30 and 40 days), is shown in figure 3. It is shown

that the overall treatment time should be
larger than a minimum value to maximize

130 ...... . .... the tumor BED when the resensitization
125 0d=40days effect is considered and the minimum
120 /•-"J

115 Tpd = 30 days overall time slightly depends on the
11o potential double time Tpd.
105 Tpd =15 days The optimum fractional dose

95 -distributions with the maximum fractional
~90

90 dose constraints set to 3 Gy and 5 Gy are
m 85 shown in figure 4. In figures 4a and 4b,

80
75 the a/P3 ratio for tumor is 1.5 Gy and the
70 overall time is 43 days. In figures 4c and
65 4d, the a/P ratio for tumor is 3.0 Gy and
60L L L L L L L L

60 15 20 25 30 3 40 4 50 55 60 the overall time is 38 days. It is

Overall Times (days) interesting to observe that many fractional

Figure 3. The optimized tumor BED as a function of the doses become zero and a
overall treatment time when Td =15,30,40 days. hypofractionation scheme with the size of

the maximum fractional
dose constraints is more 4 

6.

favorable. The non-zero
fractionations are 4; nfl
almost equally spaced !a 3J

over the entire (Dl I1
treatment time and the ,
optimum number of
fractionation is J _l . 1

determined mainly by 5 10 15 20 25 30 35 40 5 10 Is 20 25 30 35 40

the maximum fractional (a) Overall Time (days) (b) Overall Time (days)

dose constraint. For 4.6

example, the number of
optimum fractionation 3.

is 20 and 9, H
respectively, for the 2 I.

maximum fractional 0 0
dose constraint of 3 and [I
5 Gy. Our results
indicate that 0 ... . . . . 0 .. -+ -

5 10 15 20 25 30 35 5 10 15 20 25 30 35

hypofractionation (c) Overall Time (days) (d) Overall Time (days)

remains to be the
optimum treatment Figure 4. The optimum fractionation doses with Trs 2 days for slowly proliferating

scheme even when the tumors. (a) a/I = 1.5 Gy, the maximum fractional dose constraint is 3 Gy and the overall
treatment time is 43 days; (b) /P3 = 1.5 Gy, the maximum fractional dose constraint is 5

ct/13 ratio for tumor is Gy and the overall treatment time is 43 days; (c) &/P3 = 3 Gy, the maximum fractional
the same as that of the dose constraint is 3 Gy and the overall treatment time is 38 days; and (d) a/I = 3 Gy, the
late responding tissue maximum fractional dose constraint is 5 Gy and the overall treatment time is 38 days.

(both are 3.0 Gy).
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III. KEY RESEARCH ACCOMPLISHMENTS

"* Developed a series of mathematical formulae to incorporate model parameter uncertainty
into IMRT optimization.

"* Verified the new method in the prostate cancer case and better dose coverage/sparing can be
obtained with appropriate parameters.

"* Developed a clinical knowledge-based IMRT inverse treatment planning with the obtained
model parameters and studied 30 prostate cancer cases using the proposed inverse planning
framework.

"* Implemented an algorithm to optimize the time-dose-fractionation for the radiation treatment
of prostate cancer with inclusion of the biological model parameter uncertainties.

IV. REPORTABLE OUTCOMES

The following is a list of publications resulted from the grant support. Copies of the publication
materials are enclosed with this report.

Refereed publication:
1. Yang Y. and Xing L. Optimization of radiotherapy dose-time-fractionation with consideration of
tumor specific biology. International Journal of Radiation Oncology Biology and Physics,
(submitted), 2005.
2. Yang Y and Xing L. Towards Biologically Conformal Radiation Therapy (BCRT): Selective
IMRT Dose Escalation Under the Guidance of Spatial Biology Distribution. Medical physics.
(Accepted), 2005.
3. Yang Y. and Xing L. Clinical knowledge-based inverse treatment planning. Physics in Medicine
and Biology 49: 5101-5117(2004).
4. Lian J. and Xing L. Incorporating Model Parameter Uncertainty into Inverse Treatment Planning,
Medical Physics 31: 2711-2720 (2004).
5. Lian J., Cotrutz C. and Xing L. Therapeutic treatment plan optimization with probability density-
based dose prescription. Medical Physics 30: 655-666 (2003).

Published Abstracts:
1. Yang Y. and Xing L. Inverse Treatment Planning with Adaptively Determined Voxel-Dependent
Importance Factor, 46th annual Meeting of AAPM, Pittsburgh, July 2004.
2. Yang Y. and Xing L. Clinical knowledge-based inverse treatment planning. In: the 46th American
Society for Therapeutic Radiation and Oncology (ASTRO) meeting, Atlanta, 2004.
3. Tan C., Yang Y., Boyer A. and Xing L. Enhancing the efficacy of radiation therapy by
incorporating spatial distribution of heterogeneous biology. In: the 46th American Society for
Therapeutic Radiation and Oncology (ASTRO) meeting, Atlanta, 2004.
4. Lian J., Spielman D., Cotrutz C., Hunjan S., Adalsteinsson E., King C., Luxton G., Kim D.,
Daniel B. and Xing L. Including metabolic uncertainty into proton MR spectroscopic imaging
(MRSI)-guided inverse treatment planning. In: the 45th American Association of Physicists in
Medicine (AAPM) Meeting, San Diego, 2003
5. Lian J. and Xing L. Biological Model Based IMRT Optimization with Inclusion of Parameter
Uncertainty. In: the 14th International Conference on the Use of Computers in Radiation Therapy
(ICCR), Seoul, Korea, 2004
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New Employment:
With the help of this grant and associated publications, the previous PI (Jun Lian) has obtained an
assistant professor position in the Department of Radiation Oncology at the University of North
Carolina at Chapel Hill. The Current PI (Yong Yang) has obtained offers of assistant professor in
the department of radiation oncology at several prestigious universities (written offers from UCSF
and University of Pittsburgh, and verbal offer from UCLA). He is in the process of choosing one of
them to start his academic research career. He plans to continue his research in prostate cancer to
contribute to better prostate patient care.

V. CONCLUSIONS

Inverse planning is an important step in IMRT and its performance crucially determines the
quality of IMRT treatment plans. In this work, a technique for incorporating biological model
parameter uncertainties into inverse treatment planning has been developed. By including model
parameter uncertainties, we provide a mechanism for incorporating clinical end point data into
inverse treatment planning process and established a clinically practicable inverse planning
framework. The new formalism sheds important insight into the problem of therapeutic plan
optimization. The results of 30 prostate cancer cases demonstrated that the proposed technique is
capable of greatly improving the sensitive structure sparing with comparable target dose coverage
and homogeneity. In addition, through accounting for the known uncertainties in the model
parameters, we implemented an algorithm to optimize the time-dose-fractionation for the radiation
treatment of prostate cancer. The investigation sheds useful insight into the complex dose-time-
fractionation problem in prostate cancer radiation therapy and is valuable for drafting the optimum
clinical trials for prostate cancer radiotherapy and for interpreting clinical outcome data.
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Abstract

Purpose: To explore the influence of the "four Rs" of radiobiology on external beam

radiotherapy for fast and slowly proliferating tumors and develop an optimization

framework for tumor-biology specific dose-time-fractionation scheme.

Materials and Methods: The LQR model proposed by Brenner et al (IJROBP, 32(2),

1995) is used to describe radiation response of tumor, in which the time dependence of

sublethal damage repair is included and redistribution and reoxygenation effects are

described using a term of resensitization with an average resensitization time. The

optimum radiotherapeutic strategy is defined as the treatment scheme that maximizes

tumor biologically effective dose (BED) while keeping normal tissue BED constant.

Simulated annealing optimization technique is used to search for the optimal

radiotherapeutic strategies. The influence of different model parameters on total dose,

overall treatment time, fraction size and intervals is also studied.

Results: For fast proliferating tumors the optimum overall time is similar to the assumed

Tk, the time from the beginning of treatment to the starting of accelerated proliferation,

and almost independent of interval patterns. Significant increase in tumor control can be

achieved using accelerated schemes for the tumors with doubling time smaller than 3

days, but little is gained for those with doubling time greater than 5 days. It is also found

that the incomplete repair of normal tissues between two consecutive fractions in

standard fractionation has almost no influence on the fractional doses, even for the

hyperfractionation with an interval time of 8h. When the resensitization effect is

included, the fractional doses at the beginning and end of each irradiated week become

obviously higher than others in the optimum scheme and the hyperfractionation scheme

has little advantage over the standard or hypofractionation one. For slowly proliferating

tumors, provided that the a/P ratio of the tumor is comparable to that of the normal

tissues, a hypofractionation is more favorable. The overall treatment time should be

larger than a minimum, which is predominantly determined by the resensitization time.
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Conclusion: The "four Rs" of radiobiology play an important role in the design of

radiation therapy treatment protocol. To maximize the efficacy of radiation therapy, the

properties of the different types of tissues as characterized by the "four Rs" should be

exploited and incorporated into the patient treatment through the optimization of dose-

time-fractionation. The proposed technique provides a useful tool to systematically

optimize radiotherapy for fast and slow proliferating tumors. The study sheds important

insight into the complex problem of dose-time-fractionation and suggests that tumor site-

specific optimization has great potential to improve therapeutic outcome.

Key word: Optimization, linear-quadratic model, fractionation, biological model,

radiobiology, TCP, NTCP.
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INTRODUCTION

Generally, there are three main directions to improve radiotherapy: 1) improving physical

dose distributions(I -6); 2) optimizing radiotherapy dose-time-fractionation scheme(7-10);

and 3) modifying radiation response in tumor (radiosensitizers)(1 1, 12) and/or normal

tissues (radioprotectors)(13, 14) using chemical agents. With clinical implementation of

new radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT)(1-5), it is

now possible to achieve optimal physical dose distributions on a patient specific basis.

On the other hand, the application of radiobiology studies in clinical practice is still at a

primitive stage and a forward comparison of tumor control probability (TCP) and normal

tissue complication probability (NTCP) is often employed in the design of patient

treatment protocol. To facilitate the design of optimum patient treatment protocols and

fully exploit the potential of radiobiology research carried out over the years, it is highly

desirable to develop a technique for inverse optimization of dose-time-fractionation (15-

20). This will not only allow us to better understand the influence of various biological

parameters on radiation therapy treatment of cancer, but also provide a practical tool to

obtain the optimal total dose, overall treatment time, fraction sizes and intervals for each

disease site.

It is well known that the radiation response of a tissue can be characterized by the

"four Rs"(21) of radiobiology: repair of sublethal damage, repopulation, redistribution

and reoxygenation. Different approaches have been used to model the radiation response,

but the most commonly accepted one is the linear-quadratic (LQ) model(7, 22). The

original LQ model describes the mechanism of cell killing and captures the

characteristics of sublethal damage repair. The model has been extended to include time

effect and the influence of the "four Rs"(23, 24). Current standard fractionation and

hyperfractionation schemes exploit the difference in the repair capability to sublethal

damage between early-responding tissue and late-responding tissue while various

accelerated schemes are motivated by the attempt to reduce the tumor repopulation effect.

A recent research(9) has taken the difference in repair rate of sublethal damage of early-

responding and late-responding tissues into account in designing brachytherapy

protocols. The result suggested that larger doses should be given at the beginning and end
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of treatment for accelerated treatment regimens. For external beam radiotherapy,

however, little systematic study has been done to exploit the temporal processes of the

repair, repopulation and resensitization (redistribution and reoxygenation) and their

influence on the optimum treatment strategy for different types of tumors.

In this work, we describe a method for optimizing the treatment protocols for fast

proliferating tumors (e.g., head and neck cancer) and slowly proliferating tumors (e.g.,

prostate cancer). The study starts from an extended LQ model with inclusion of the "4-

R's". The optimum dose-time-fractionation is then formulated as a problem of searching

for the highest tumor biologically effective dose (BED) while keeping the normal tissue

BED constant. A salient feature of the technique is that various influencing radiobiology

parameters, such as the redistribution and reoxygenation, are incorporated naturally

during the optimization process. The general reference drawn from this study is that

tumor and normal tissue biology plays a significant role in the success of radiotherapy

and a truly individualized treatment is highly desirable to maximize the efficacy of

radiation therapy.

METHODS AND MATERIALS

The LQR model for fractionation scheme

The LQR model proposed by Brenner et a](24) is used in this study to describe radiation

response of tumor. In this model the time dependence of sublethal damage repair is

included and the redistribution and reoxygenation effects are cast in a term of

resensitization with an average resensitization time. The surviving fraction S of tumor

cells irradiated with an arbitrary fractionation scheme can be expressed as

S = exp[ -aD - flG(rR)D 2 + (-Ic2 )G(rs)D2 + H(To, ,Tk)(To, - Tk)/Tpd1, (1)

where a and P3 are linear quadratic constants characterizing the intrinsic radiosensitivity,

a.2 is variance of Gaussian distribution of a, TR is repair time, Ts is average

resensitization time, D is total dose, Ttot is overall treatment time, Tpd is average potential

doubling time, and Tk is "kick-off" time of accelerated proliferation, representing the time
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from the beginning of treatment to the starting of accelerated proliferation. H(xxo)

denotes the Heaviside function and is defined as

0, if 0O_<x < Xo (2)
=1, if x >-xo

G(r) is the generalized Lea-Catcheside function defined by

G('r)= ( -i2) 2 ° duR(u) f dwR(w) exp[-(u -w)/ r], (3)

where R(t) is the dose rate function. For an arbitrary fractionation scheme with fractional

dose distribution {dl..., di ,... }, and fractional intervals {At 1... , Ati,... }(di represents the

ith fractional dose and At, represents the time interval between fractions i and i+]).

Assuming that the delivery time for each fraction is ignorable, we can rewrite equation

(1) using equation (3) as follows

S : exp { [-cxd, - 8G, (r)di +!-c2G,(r,)di ]+H(T,o,,Tk)(To, -Tk)/Tpd}, (4)
=l 2 p

where I is total fraction number. Here Gi(r) is calculated for each fraction with following

form:

2 '• i-Gj (I-)= I +--d i j• j-exp(-Atk /)- k (5)
di j=I k=j

For normal tissues, we only consider the cell killing and incomplete repair of sublethal

damage, i.e., only the first two terms in equation (4) are included.

Optimization formulation

The goal here is to maximize tumor BED while keeping normal tissue BED constant.

BED is calculated using the cell survival S given by equation (4) according to (17, 22):

1
BED =- ln(S). (6)

a

TCP and NTCP are calculated using (19, 25)

TCP or NTCP= exp(-NoS) = exp[-N 0 exp(-aBED)], (7)

where No is the total number of tumor or normal tissue cells. To proceed, it is convenient

to use the BED of the standard scheme (70Gy, 2Gy/f, 1f/d, 5f/w) as a reference because
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its properties are well understood and extensive clinical data for the scheme has been

accumulated. Mathematically, the dose-time-fractionation optimization can be found by

minimizing the objective function

F =BEDIo / BED,, (8)

under the constraints

BED,, = BED,,,o, (9)

and

BED ne < BED ne (10)

where BED,, BED,,, and BED,,e are the BEDs of the target, late-responding normal tissue

and early-responding tissue for the optimal scheme, respectively, and BEDo, BEDni0, and

BEDne represent the same for the standard scheme.

Theoretically, the interval time between two consecutive fractions can be treated

as one of the system variables and optimized by computer. With clinical practicality in

mind, we only study two patterns of intervals: five fractions per week (interval=l day)

with weekend break (standard fractionation) and 10 fractions per week (interval between

two fractions in the same day is 8 h) with the overnight and weekend breaks

(hyperfractionation). The overall time is from 2 weeks to 8 weeks with an increment of 1

day. For each overall treatment time, our optimization program will then search for the

optimal fractional doses that maximize the tumor BED with constant normal tissue BED.

By introducing Lagrange multipliers, X, and X,, the optimization problem with

constraints(26, 27) specified in equations (9) and (10) can be expressed as

F = BED, 0 / BEDt + 2, (BED,,, - BED,,,0)

+ 2AeH(BEDne, BEDneo)(BEDne -BEDneo), (11)

where H(xxo) is the Heaviside function defined in equation (2). A simulated annealing

optimization technique(28, 29) is used to optimize the objective function (11) with the

fractional doses as the optimization variables. For each given interval pattern, the optimal

overall treatment time is found by comparing the optimal tumor BEDs obtained for all

possible overall treatment times.
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Estimation of Radiobiologic Parameters

Before optimizing the dose-time-fractionation, it is important to determine the values or

the variation ranges of the model parameters for the studied tumor sites. Seven

independent parameters for each tumor site and three parameters for each normal tissue

are needed, which are a, a/P ratio, Tk, Tpd, rR, Zs, and lo-2 for tumor and a, a/3 ratio, and

rR for normal tissue. In this study a is set to be 0.315/Gy for both late-responding and

early-responding normal tissues. a/P ratio and repair time TR are chosen to be 3 Gy, 4 h

and 10 Gy, 0.5 h for the late-responding and early-responding tissues, respectively(10,

22, 30). For fast proliferating tumors, the estimated doubling time, Tpd, is around 3 days

as indicated by recent studies(31, 32) and the commonly accepted a is 0.35/Gy with a/P3

ratio = 10 Gy(10, 22). Tk for head and neck (HN) tumors as revealed by some studies is in

the range of 21 to 35 days(33), and the repair time of the tumor cell ZR is around 0.5 h(9,

30). The resensitization process includes both the redistribution and reoxygenation

effects. It is estimated that the resensitization time rs is comparable to the cell cycle time

or reoxygenation characteristic time, i.e., hours to days. In this work we assume rs to be

in the range of 0.5-3 days for fast proliferating tumors(24). 1 a 2 represents the amplitude

2

for the resensitization and is assumed to be 0.02. In addition, in order to convert the

resultant BED to TCP we assume that the total number of tumor cells No =10 8.

For slowly proliferating tumors, such as prostate tumor, a is assumed to be

0.10/Gy and a/13 ratio in the range of 1.0-4.0 Gy, as suggested by several recent

studies(19, 34, 35). The estimated doubling time during radiotherapy is around 40 days,

with a range from 16 to 61 days(36). Because there is no Tk data available for slowly

proliferating tumors, in this work we study the extreme situation, i.e., Tk =0. The results

should be extendable to situations with nonzero Tk values. The repair time of prostate

tumor cells is 1.9 h, suggested by Fowler et al(35). A recent study(37) showed that there

might be no full redistribution of cells around the cell cycle between radiation fractions

spaced by I day. Thus, we assume "rs to be in the range of 1-3 days. We choose 1-2a.
2
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1
8fl for slowly proliferating tumors. Table I summarizes the values of model parameters

3

used in this work for the fast and slow proliferating tumors.

RESULTS

Fast proliferating tumors

Overall treatment time

Figures la and lb show the optimized tumor BED as a function of the overall treatment

time for three different Tk's (21, 28 and 35 days) for the two studied interval patterns

(standard fractionation and hyperfractionation). Other parameters used to obtain the data

are listed in Table 1. It is found that there exists an optimum overall treatment time with

which the maximum tumor BED is achieved for each Tk. The optimum overall time is

similar to the assumed Tk and almost independent of interval patterns. For the standard

fractionation, for example, TCP increases by about 60% for a treatment with the optimum

overall time as compared with the conventional 7-week overall time if Tk =28 days.

Figures 2a and 2b show the BED as a function of the overall treatment time for a

few different Tpd values (2, 3, 4 and 5 days) for the two studied interval patterns. In both

cases, the influence of Tpd is more pronounced when Tpd is small. When Tpd is larger than

5 days, shortening the overall time results in almost no increase in tumor BED. For

example, the difference in TCPs between the treatment schemes with the optimum

overall time and the conventional 7-week overall time is only about 3% when Tpd =5 days

for the standard fractionation.

In figures 3a and 3b we show the results for rs =0.5, 1, 2, to 3 days for the two

interval patterns. While the BED is sensitive to the variation of 'rs, the optimum overall

time is not.

Total dose
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The optimized total dose versus the over time for a few Tk's is shown in figure 4 for the

two interval patterns. As expected, the total dose increases with the overall time.

Generally, the fractional dose increases with the reduction of overall time. In order to

keep normal tissue complications (mainly late complications) constant, the total dose

must be decreased. Figure 4 also suggests that the hyperfractionation require a higher

total dose than the standard fractionation for the same overall time. In addition, it is seen

that the optimized total dose is independent of Tk for both types of fractionation regimes.

Fractional doses

Figures 5 and 6 show the optimum fractional doses obtained for two examples: one for

the standard fractionation with overall time of 40 days and total fraction number of 29

and the other for the hyperfractionation with overall time of 46 days and total fraction

number of 68. In figures 5a and 6a we plot the results with Z"R =0 h for both tumor and

normal tissues and cs =0 h for tumor. These parameter values represent the situation that

the sublethal damage repair for both tumor and normal tissues and the resensitization of

tumor cells are completed immediately after irradiation. In this situation, it is found that a

uniform fractional dose is more favorable. The result is intuitively conceivable because

evenly distributed fractional doses maximize the repair of the late-responding tissue,

leading to the maximum tumor BED with a given normal tissue damage. The influence of

different normal tissue repair time on the optimum fractional doses with fixed 's =0 h and

ZR =0.5 h for tumor is shown in figures 5b-c and 6b-c. For the standard fractionation,

when late tissue repair time ZR is set to be 4 h, the optimum fractional doses remain

uniform. This is because the sublethal damage repair of normal tissue is almost

completed during the interval between two consecutive fractions (24 h). When Z'R of

normal tissue increases from 4 h to 12 h, higher fractional doses at the beginning and end

of each week become preferable. The ratio of the averaged "spike" dose with the

averaged dose of remaining fractions is 1.4. For the hyperfractionation, the dose "spikes"

occur even if the normal tissue repair time ZrR is 4 h. The ratio in this case is 1.1. The

effect becomes more pronounced as ZrR is increased to 8 h and the ratio becomes 1.4.
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Figures 5d and 6d illustrate the results for the average tumor resensitization time rs =24 h

with 'R = 0.5 h for tumor and 4 h for the late-responding tissue. Similar to the situation

discussed above, the optimal fractional doses at the beginning and end of each week are

higher when the resensitization effect is included. The ratios of the averaged "spike" dose

with the averaged dose of remaining fractions are 1.2 and 1.3 for the standard

fractionation and hyperfractionation, respectively.

Interval patterns

A comparison of the tumor BED of the standard fractionation and hyperfractionation for

the same late tissue complication as a function of overall treatment time is plotted in

figure 7. The influences of different normal tissue repair time (rR) and tumor average

resensitization time (rs) are also illustrated. In figure 7a we ignore the resensitization

effect and assume that the sublethal damage repair is completed immediately after

irradiation (i.e., lo'2 an
2 ' rs and rR for tumor and normal tissues are all set to be zero). The

results show that, in this situation, the BED for the hyperfractionation is higher than that

for the standard fractionation. Figures 7b and 7c show the results with the incomplete

repair considered but the resensitization effect ignored. The tumor repair time is set to 0.5

h and the late tissue repair time 4 h and 8 h in figures 7b and 7c, respectively. It is found

that, although the hyperfractionation is better than the standard fractionation, the BED

difference between the two fractionation regimes decrease as the late tissue repair time

increases. Figure 7d shows the results with the resensitization effect included. The

average resensitization time for tumor is 24 h with rR = 0.5 h for tumor and 4 h for the

late tissue. As seen from the data, the BEDs for the two regimes are very close in this

situation.

Slowly proliferating tumors

When the a/P ratio for tumor is lower than that for the surrounding normal tissues, our

formulae suggest that a single fractionation irradiation is the optimum scheme if the

resensitization effect is ignored. Clinically, however, a single fractionation irradiation
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may result in disastrous acute sequelae and consequential late effect. Because there is

currently no good way to model the acute sequelae and consequential late effects, in this

work we simply restrict the fractional dose to within a given value to consider these

effects.

Overall treatment time

The optimized tumor BED as a function of the overall treatment time for different Tpd

(15, 30 and 40 days) is shown in figure 8a. The maximum fractional dose is constrained

to 5 Gy in this calculation. Other parameters used to obtain these data are listed in Table

1. Different from fast proliferating tumors, we found that the overall treatment time

should be larger than a minimum value to maximize the tumor BED when the

resensitization effect is considered. The optimum BED increases gradually with the

overall time before this minimum overall time and after it the BED almost keeps

constant. It is also shown that the minimum overall time slightly depends on the potential

double time TPd. The larger the Tpd, the larger the minimum overall time is. For example,

the minimum overall time is about 5-6 weeks for TPd = 40 days, but about 3-4 weeks

when Tpd = 15 days. In addition, the curve for Tpd = 15 days shows that the tumor BED

slightly decreases after about 6 weeks due to the influence of tumor cell proliferation.

However, the decrease disappears if Tk takes 28 days rather than 0(data not shown).

Figure 8b gives the results for different rs (1, 2 and 3 days) with Tpd = 40 days. It is seen

that the minimum overall time is significantly dependent on rs: the larger the rs, the

larger the minimum overall time. The minimum overall time is about 3 weeks for 7s = 1

day, 6 weeks for rs = 2 days and larger than 9 weeks for "rs = 3 days. This conclusion

implies that longer overall treatment time is preferred for the slow proliferating tumors

(e.g, tumors with more hypoxic cells).

The data in the above are obtained with maximum fractional dose constraint of 5

Gy. The calculation can be easily extended to other constraint values and similar

conclusions can be reached.

Total dose
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Figure 9a shows the optimized total dose as a function of the overall treatment time when

the maximum fractional dose is 3, 4, 5 and 6 Gy, respectively. The parameters used to

obtain these curves are listed in Table 1. Unlike the case of fast proliferating tumors, in

this circumstance, total dose does not change with the overall treatment time because the

optimum total fractionation number is purely determined by the given maximum

fractional dose constraint. Furthermore, as shown in figure 9b, total dose increases with

the decrease of maximum fractional dose constraints.

Fractionation scheme

The optimum fractional dose distributions with the maximum fractional dose constraints

set to 3 Gy and 5 Gy are shown in figure 10. In figures 10a and 10b, the U/P ratio for

tumor is 1.5 Gy and the overall time is 43 days. In figures 1Oc and IOd, the a/P ratio for

tumor is 3.0 Gy and the overall time is 38 days. It is interesting to observe that many

fractional doses become zero and a hypofractionation scheme with the size of the

maximum fractional dose constraints is more favorable. The non-zero fractionations are

almost equally spaced over the entire treatment time and the optimum number of

fractionation is determined mainly by the maximum fractional dose constraint. For

example, the number of optimum fractionation is 20 and 9, respectively, for the

maximum fractional dose constraint of 3 and 5 Gy. Our results also indicate that

hypofractionation remains to be the optimum treatment scheme even when the U/P ratio

for tumor is the same as that of the late responding tissue (both are 3.0 Gy).

The change of the optimized tumor BED with the total dose with tumor a/0=1.5

and 3 Gy and rs-=1 days are shown in figure 1 la. The overall treatment time is 46 days for

all calculations shown in figure 1 Ia. It is found that the tumor BED decreases with the

increase of total dose and a hypofractionation schemes yields a higher tumor BED even if

the tumor a/3 ratio is the same as that of the late responding tissue. Figure 1 lb shows the

influence of different -s (1, 2, and 3 days) on the BED. For the same maximum fractional

dose constraint, the optimized tumor BED decreases with the increase of resensitization

time 'cs. The smaller the fractional dose, the larger the influence of resensitization time Ts

is. Unlike the fast proliferating tumors, the fractional dose and interval time do not
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change with rs as shown in figures 1 Ic and d, in which the ts is set to 1 day and 3 days,

respectively.

DISCUSSIONS

Several clinical and experimental studies suggest that the estimated doubling time for HN

tumors is as short as 2-3 days(31, 32) and the accelerated tumor growth is similar for all

HN tumor sites and stages. In this situation, our calculation indicates that there exists an

optimum overall treatment time that maximizes tumor control while keeping the normal

tissue complication constant. We found that the optimum overall time is close to the

assumed Tk and almost independent of fractionation patterns and tumor resensitization

time, which is similar to that proposed by Fowler(10). However, when the doubling time

is larger than 5 days, it is found that the tumor control improves little by shortening the

overall treatment time, suggesting that the gain of accelerated schemes is extremely

sensitive to the tumor proliferation rate. The conclusion appears to be consistent with the

results of randomized prospectively controlled clinical trials for 1HN tumors by the

European Cooperative Radiotherapy Group (ECRG) (38). When compared with the

standard fractionation scheme, the ECRG data show that the accelerated scheme

substantially increases the local control rate for tumors with Tpd< 4 days, whereas for

tumors with T d> 4 days, there is no detectable difference between the two fractionation

schemes. Therefore, in order to truly benefit from accelerated fractionation, it is essential

to select patients with fast-proliferating tumors.

The repair time is typically less than 1 h for tumor and around 4 h for slow repair

component of normal tissues, as suggested by a number of clinical and laboratory-based

animal studies(9, 30, 39). As shown in this work, this difference in the repair rate has

almost no influence on the fractional doses for the standard fractionation. For

hyperfractionation with two consecutive fractions spaced by 8 h, the difference results in

slightly higher fractional doses at the beginning and end of each week. This result is in

accordance with the dose "spikes" effect mentioned by Brenner et al(9) for brachytherapy

treatment with an overall treatment time of 120 h. The dose "spikes" effect becomes
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larger with the lengthening of repair time for normal tissues as illustrated in this study.

The underlying biology of this effect is that normal tissue cells can get better repaired

during the longer rest of weekends. Interestingly, including of the resensitization effect

leads to similar results as shown in figures 5d and 6d. We attribute this feature to the

increased tumor cell killing caused by the sufficient resensitization during the weekends.

Furthermore, this work indicates that the studied hyperfractionation scheme leads to

better tumor control as compared to the standard fractionation scheme even when the

incomplete repair is included. However, when the resensitization effect (rs=1 day) is

considered, the advantage of the hyperfractionation becomes less obvious as shown in

figure 7d, suggesting that the standard fractionation or a hypofractionation scheme may

be more suitable for hypoxic tumors.

For slowly proliferating tumors, the typical doubling time is about 40 days and the

at/P3 ratio is in the range of I to 4 Gy. Animal studies and clinical observations support

that the a/P3 value for late rectal damage is greater than 4 Gy(40). Under this

circumstance, it is obvious that hypofractionation is the optimum choice. Our work also

suggests that a hypofractionation scheme is preferable even if a/3 ratios for both tumors

and late rectal tissues are close, e.g., all equal to 3.0 Gy.

Different from fast proliferating tumors, there is no biological advantage to

shorten the overall treatment time for tumors with slow proliferation rate. Furthermore, if

the resensitization effect is considered, there exists a minimum overall treatment time

below which the tumor control starts to decrease. The main reason responsible for this

phenomenon is that enough interval time between two consecutive fractions is required to

sufficiently sensitize the tumor cells. Our study suggests that current overall treatment

time (6-7 weeks) should be kept for the hypofractionation scheme. This will enhance the

tumor control and reduce the risk of acute sequelae and consequential late effect that is

not easily modeled by currently available radiobiology theory. In addition, as shown in

figures 11 a and b, although a larger fractional dose results in a higher tumor control, the

enhancement becomes insignificant when the fractional dose is greater than 5-6 Gy when

a/f3 ratios for the tumor and later rectal tissue are comparable or when the resensitization

time is large (e.g., rs-=3 days). Therefore, a fractional dose of 5-6 Gy seems to be suitable

for prostate hypofractionation treatment. We note that the risk involved in this kind of
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treatment is relatively low. The experience of 22 years in London with 232 prostate

cancer patients treated with a 6x6 Gy scheme in 3 weeks has indicated comparable local

response and minimal late morbidity when compared with the standard fractionation

scheme(41).

Finally, it should be recognized that the LQR model used in this investigation is

far from satisfactory in modeling the responses of tumors and normal tissues and there is

also considerable uncertainty in the currently available model parameters. Notably, using

a single resensitization time for both redistribution and reoxygenation effects in LQR

model should be improved in the future so that the tumor response can be more properly

described. In order to yield clinically meaningful results, more sophisticated radiobiology

model and more accurate parameters are needed. In addition, theory that better describes

the acute reactions and consequential late effect should also be in place.

CONCLUSIONS

In this work we have described a general framework for dose-time-fractionation

optimization and explored the influences of the "four Rs" of radiobiology on radiation

therapy for fast and slowly proliferating tumors. Different dose-time-fractionation

schemes are evaluated in reference to the standard fractionation and the role of various

biological parameters in the design of a treatment protocol is elaborated. Our study

indicates that it is clinically significant to design radiation therapy treatment based on the

specific biological properties of the tumor and normal tissues. The investigation sheds

useful insight into the complex dose-time-fractionation problem in radiation therapy and

is valuable for drafting the optimum clinical trials for different tumor sites and for

interpreting clinical outcome data.
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Table 1 Model parameters used in our study

Parameters Fast Proliferating Slowly Proliferating
Tumors Tumors

LQ constant for tumor, a 0.35/Gy 0.10/Gy

a/3 ratio for tumor 1OGy 1.5Gy

"Kick-off' time for tumor, Tk 28 days 0 days

Doubling time for tumor, Tpd 3 days 40 days

Resensitization time for tumor, rs 1 days 2 days

Repair time for tumor, rR. tumor 0.5 h 1.9 h

Variance of Gaussian distribution 1

of a, la2 0.02 3-fi
2

LQ constant for late-responding 0.315/Gy 0.315/Gy
normal tissue, a

a/P3 ratio for late-responding 3 Gy 3 Gy
normal tissue

Repair time for late-responding 4 h 4 h
normal tissue, TR L_tissu

LQ constant for early-responding 0.315/Gy 0.315/Gy
normal tissue, a

a/3 ratio for early-responding 10 Gy 10 Gy
normal tissue

Repair time for early-responding 0.5 h 0.5 h
normal tissue, Tse_,_
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Legends

Figure 1. The optimized tumor BED as a function of overall treatment time when Tk =21,

28 and 35 days. (a) Results for standard fractionation (If/d, 5 f/w); and (b) Results for

hyperfractionation (2f/d, 10 f/w).

Figure. 2. Influence of doubling time Tpd (2, 3, 4 and 5 days) on the optimum overall

treatment time. (a) Results for standard fractionation (lf/d, 5 f/w); and (b) Results for

hyperfractionation (2f/d, 10 f/w).

Figure 3. Influences of average resensitization time rs (0.5, 1, 2, and 3 days) on the

optimum overall treatment time. Parameters used to obtain this curves are listed in table

1. (a) Results for standard fractionation (I f/d, 5 f/w); (b) Results for a hyperfractionation

pattern (2f/d, 10 f/w).

Figure 4. The optimized total dose as a function of overall treatment time when Tk = 21,

28 and 35 days.

Figure 5. The optimum fractional doses for four different sets of 'R and rs for the standard

fractionation. The overall treatment time is 40 days and the total fraction number is 29.

Figure 6. The optimum fractionation dose for four different sets of ZR and rs for the

hyperfractionation. The overall treatment time is 46 days and total fraction number is 68.

Figure 7. A comparison of the tumor BEDs under the same normal tissue BED

constraints for the standard fractionation and hyperfractionation schemes.

Figure 8. The optimized tumor BED as a function of the overall treatment time when Tpd

=15, 30, 40 days (a) and -s = 1, 2, 3 days (b). The maximum fractional dose is restricted

to 5 Gy.
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Figure 9. (a) The optimized total doses as a function of overall treatment time for

different maximum fractional dose constraints (3, 4, 5 and 6 Gy). (b) The optimized total

doses as a function of the overall fractionation number.

Figure 10. The optimum fractionation doses with rs = 2 days for slowly proliferating

tumors. (a) ct/j3 = 1.5 Gy, the maximum fractional dose constraint is 3 Gy and the overall

treatment time is 43 days; (b) at/f3 = 1.5 Gy, the maximum fractional dose constraint is 5

Gy and the overall treatment time is 43 days; (c) a/P3 = 3 Gy, the maximum fractional

dose constraint is 3 Gy and the overall treatment time is 38 days; and (d) at/P3 = 3 Gy, the

maximum fractional dose constraint is 5 Gy and the overall treatment time is 38 days.

Figure 11. (a) The optimized tumor BED as a function of total dose for different a/P3

ratios and rs. (b) The optimized tumor BED as a function of total doses for different rs;

(c) and (d) The optimum fractional doses for "s = I and 3 days. In all calculation the

overall time is set as 46 days.
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Abstract

It is well known that the spatial biology distribution (e.g., clonogen density,

radiosensitivity, tumor proliferation rate, functional importance) in most tumors and

sensitive structures is heterogeneous. Recent progress in biological imaging is making the

mapping of this distribution increasingly possible. The purpose of this work is to

establish a theoretical framework to quantitatively incorporate the spatial biology data

into IMRT inverse planning. In order to implement this, we first derive a general formula

for determining the desired dose to each tumor voxel for a known biology distribution of

the tumor based on a linear-quadratic (LQ) model. The desired target dose distribution is

then used as the prescription for inverse planning. An objective function with the voxel-

dependent prescription is constructed with incorporation of the nonuniform dose

prescription. The functional unit density distribution in a sensitive structure is also

considered phenomenologically when constructing the objective function. Two cases

with different hypothetical biology distributions are used to illustrate the new inverse

planning formalism. For comparison, treatments with a few uniform dose prescriptions

and a simultaneous integrated boost are also planned. The biological indices, TCP and

NTCP, are calculated for both types of plans and the superiority of the proposed

technique over the conventional dose escalation scheme is demonstrated. Our

calculations revealed that it is technically feasible to produce deliberately nonuniform

dose distributions with consideration of biological information. Compared with the

conventional dose escalation schemes, the new technique is capable of generating

biologically conformal IMRT plans that significantly improve the TCP while reducing or

keeping the NTCPs at their current levels. Biologically conformal radiation therapy

(BCRT) incorporates patient specific biological information and provides an outstanding

opportunity for us to truly individualize radiation treatment. The proposed formalism lays

a technical foundation for BCRT and allows us to maximally exploit the technical

capacity of IMRT to more intelligently escalate the radiation dose.

Key word: Inverse Planning, Biological Model, TCP, NTCP, IMRT

2



I. INTRODUCTION

Intensity modulated radiation therapy (IMRT) has been used clinically to provide a

highly conformal radiation dose to the target volume while reducing the doses to the

surrounding sensitive structures1-1 3 . The current IMRT inverse planning is typically

aimed at producing a homogeneous target dose under the assumption of uniform biology

within the target volume. In reality, it is known that the spatial biology distributions in

most tumors and normal tissues are rarely homogeneous. To maximize the efficacy of

IMRT, it is desirable to take the inhomogeneous biological information into account and

to produce customized nonuniform dose distributions on a patient specific basis. This

type of radiation treatment is referred to as biologically conformal radiotherapy

(BCRT) 14 - 19 . The simultaneous integrated boost (SIB) to elective volumes recently

appeared in the literature1 1, 17, 20 represents a simple example of BCRT. However, an

underlying deficiency of the current SIB approach is that the boost doses are based on

previous experience, not patient-specific biological information characterizing the spatial

tumor burden distribution.

To establish the BCRT treatment planning scheme, three major aspects must be

addressed: (i) Determination of the distribution of biological properties of the tumor and

critical structures; (ii) Prescription of the desired dose distribution for inverse planning;

and (iii) Inverse planning to generate most faithfully the prescribed nonuniform dose

distribution. Recently spurred efforts in biological imaging, such as positron emission

tomography (PET), single photon emission computed tomography (SPECT), and

magnetic resonance spectroscopy imaging (MRSI), are aimed at providing solutions to

the first problem2 1 -31. To give a few examples, the clonogen density in malignant

glioma can be obtained based on the choline/creatine ratio through MRS12 9 , 30, tumor

hypoxia can be quantified using PET imaging with fluorinated misonidazole (FMISO) 2 7 ,

28, tumor proliferation rate can be obtained based on the voxel activity level in DNA

proliferation imaging (e.g., fluoro-L-thymidine PET)2 5 , 26, 32, and lung functional

importance distributions can be obtained by perfusion imaging 33 . While the development

of molecular imaging techniques is critically important in mapping out biology

distributions, the successful integration of this information into IMRT planning through
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steps (ii) and (iii) is also indispensable to fully exploit the obtained biology information

to improve patient care. In this study we focus our efforts on the last two problems, with

the optimistic assumption that spatial biology distributions within a patient has already

been determined from biological imaging or other means. Our goal is to establish a

theoretical framework for quantitatively incorporating the biological data into IMRT

inverse optimization and to show the advantage of the selective dose escalation scheme in

enhancing tumor control probability (TCP) and reducing the normal tissue complication

probability (NTCP). In conjunction with the rapid development of molecular imaging

techniques, this study lays a technical foundation for BCRT and provides a basis for

clinically realizing the new treatment strategy in the future.

II. METHODS AND MATERIALS

A. Biological characterization and nonuniform target dose prescription

We assume that biological properties influencing radiation treatment are characterized

phenomenologically by three radiobiology parameters: clonogen density (p),

radiosensitivity (a), and proliferation rate (y). Generally, these parameters are voxel

dependent. In this work we concentrate on their spatial variation within tumor, and ignore

the time dependence of the last two parameters.

To accomplish BCRT, an important step is to derive the desired dose distribution

that maximizes the cell killing based on (p, a, y) metrics. In the case of uniform biology,

it is well known that the target dose should be uniformly distributed. It is, however, not

clear at all what form of dose distribution should be used to maximize the cell killing for

an arbitrary biology distribution. We start from a linear quadratic (LQ) model 3 4 -3 6 with

inclusion of the tumor cell proliferation. According to this model, the tumor clonogen

survival Si in a voxel of volume Vi after an irradiating dose Di is given by

Si = piVi exp(-cxDi + yAT), (1)

where ai = a, [1 + di /(ai /,8,)], pi is the initial clonogen density, di is the fractional dose,

a1 and fli are the linear-quadratic coefficients of the cell survival curve, yI = ln 2/ TP is the
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cell proliferation rate, Tp is the potential cell doubling time and AT is the overall

treatment time. The TCP of a voxel i can be expressed as

TCP, = exp[-p1 Vj exp(-acDO + ±y,AT)]. (2)

The TCP for the whole tumor is product of the TCPj of all voxels within the tumor

volume, i.e.,

TCP =H TCP1 . (3)
#

For a given set of {p, a, y}, the task is to find the dose distribution that maximizes the

TCP. Because of the limitation of normal tissue dose tolerances, an arbitrarily high dose

to the tumor cannot be achieved and certain constraints need to be imposed3 6 -4 1. In line

with previous researchers 3 6 , 37, 40, we restrict the integral dose to the tumor volume to a

constant. Mathematically, the constraint is written as

mAD, = E, , (4)
i

where mi is the mass of voxel i, and E, is the integral target dose.

With the above formulation, the task becomes the maximization of the TCP under

the constraint (4). The Lagrange multiplier method is employed to solve the problem. In

this approach, a function
L(TCPI,....TCP,,...)= I-TCP, + A(Z- mD, - E,) (5)

i I

is introduced, where X is the Lagrange multiplier, and the solution is obtained by solving

the equations

-- -0. (6)
aTCP,

When mass and volume are equal for all voxels in the target, using a process similar to

Ebert and Hoban 40 (see appendix), we obtained a general formula for determining the

desired dose, D T (i), at the voxel i:

'ref - y,1) 1 A , (7)
D [" ( i ) = --- A- D -eni-a-e- Pref N1

ai ai a ( ap i

where Dref is the reference dose for the voxel with reference radiobiological parameters

(Prej, a,,, Yre9 ). In general, Dref should be set to a value that yields a clinically sensible
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TCP at the reference voxel. For a given disease site, the radiation dose used in current

clinical practice with "intent to cure" can be used as a good starting point in selecting the

value of Dref. Using Eq. (7), it is straightforward to determine the desired target

prescription dose once the radiobiological parameter (p, a, y) metrics and Dref are known.

Note that the desired dose distribution represents an ideal situation without considering

the specific dosimetric tolerances of the sensitive structures. In reality, this dose

distribution may or may not be exactly realizable. Nevertheless, it sets a landmark and

serves as the prescription dose in inverse planning to guide the dose optimization process.

The fractional dose, di, is required to obtain the parameter a, in Eq. (7). On the

other hand, di is not known until Do' (i) is known. We use a simple iterative method to

solve the dilemma. First, the fractional dose is initially set to di=Dref/Nf, Nf being the

fractional number. Second, D[ (i) is calculated using Eq. (7) and d,' D4T(i)/Nf is

updated. The new D• (i) is then obtained using the updated di. We find that Dro (i)

converges to the solution in less than 5 iterations. In this study we set a/fV=10 Gy for all

target voxels. The formalism proposed here is, however, general and can be extended to

deal with nonuniform distributions of the a/P3 ratio.

B. Inverse planning with spatially nonuniform dose prescription

The next logical step after obtaining the calculated prescription dose is to use inverse

planning to derive the optimal beam profiles that will produce the prescribed dose

distribution. To proceed, we construct an objective function to take the known biological

information into account. In addition to the voxel-specific prescription as determined by

Eq. (7), the nonlinear dose responses of tumor and normal structures are considered using

the concept of equivalent volume4 2 -4 8 of a voxel, which is defined as

(A Veff )i = V~i (i)(D(i) / D, )l" , (8)

where (A Veff)i is the effective volume for voxel i with volume V, and dose D(i), Dt is the

desired dose for a target voxel or the TD5 /5 of the corresponding organ, and 0(i) is the

functional unit density. The value of n characterizes the dose-volume effect of an organ

and reflects its architecture (serial or parallel) of the sensitive structure. It is obtained by

fitting to clinical dose-volume data. For a sensitive structure, n is a positive number (n>O)
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while for a target, n should be assigned with a small negative value (-1<n<0). 95(i) =1 for

a target voxel.

A general form of the inverse planning objective function in the voxel domain is

written as

F = - {1 +[D,(i)/ Do(i)]/"II }[D,(i)- Do (i)]2

+ Er, -- E-{I + 0, (i)[D i)TD,,15 '] }D (i)2D , (9)
C1 N,, i=1

where r, and r, are the structure specific importance factor of target r and sensitive

structure u, respectively, t, and s, the number of targets and sensitive structures, N, and N,

the total number of voxels of target r or sensitive structure U, nT and n, the n parameter of

target r and sensitive structure or, D0 (i) the calculated dose in voxel i, DOT (i) the

prescription dose in a target voxel i given by Eq. (7), and TD,5/5 the TD5 /5 of sensitive

structure u. The objective function becomes the conventional quadratic objective function

if the term in the bracket inside each summation is set to unity (this is true when the dose-

volume effect is negligible, i.e., when n, = n, = +c). More detailed information about

the optimization algorithm can be found in Ref. 49.

C. Implementation

A software module for optimizing the objective function (9) is implemented in the

platform of the PLUNC treatment planning system (University of North Carolina, Chapel

Hill, NC). The dose calculation engine and a variety of image/beam/plan display and

evaluation tools of PLUNC are used to review and compare the optimization results. The

ray-by-ray iterative algorithm (SIITP) reported earlier5 0 , 51 is employed to obtain the

optimal beam intensity profiles. The dose volume histograms (DVHs) of the involved

organs are displayed at the end of each iterative step to visually monitor the optimization

process.

D. Plan review tools

It is desirable to extend the currently used plan review tools to deal with a biologically
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heterogeneous system. For a target, we define the effective dose at a voxel as the physical

dose normalized by the desired dose determined by Eq. (7). The effective-dose volume

histogram (EDVH), which is obtained by replacing the dose with the effective dose in

conventional DVH, is a useful tool for assessing BCRT plans. For a sensitive structure

we replace the fractional volume by O, V, to construct a functional dose volume histogram

(FDVH), similar to that proposed by Lu et a15 2 and Marks et a133 . After including the

heterogeneous biological information into the EDVH or FDVH, the wisdom used in

interpreting a conventional DVH can be applied to assess the BCRT plans. In addition to

the effective dose and the EDVH or FDVH, a cluster of DVHs, each corresponding to a

given set of biological parameters {p, a, y}, are also useful to assess dosimetric behavior

of the system as a function of the biological status of the system.

Besides the dosimetric evaluation tools, we also used the TCP and NTCPs for

plan evaluation. In calculating TCP and NTCP, the heterogeneous biology distributions

need to be taken into account. TCP is calculated using equations (2) and (3) and NTCP is

assessed using Lyman's model. The Kutcher-Burman effective-volume DVH reduction

method 4 4 is extended to include the non-uniform functional unit density distribution

using Eq. (8) when transforming a nonuniform dose distribution into a uniform

irradiation of an effective partial volume. Model parameters from Burman et a153 are

listed in Table I for the NTCP calculation.

E. Case studies

A prostate case with two different hypothetical distributions of radiobiological

parameters is used to test the proposed BRCT inverse planning scheme. In each study, the

target consists of the prostate gland with a few intra-prostatic lesions. The sensitive

structures include the rectum, bladder and femoral heads. Figures la and 3a show the

geometric shapes and locations of the structures in the two examples.

In the first example the target includes four biologically different regions, and the

functional unit density distributions in the sensitive structures are uniform. Region I

represents the basis reference target volume with typical parameters 54 , 55 p0i = 5 x 105

clonogen/cm3 , ai =0.26 Gy-, and y1=ln2/40 day . The radiobiological parameters of the
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intra-prostatic lesions are listed in Table II. The parameters n, characterizing the dose-

volume effect of the sensitive structures in the objective function (9) can be found in

Table I. The parameter n, is chosen to be -0.2. For comparison, five IMRT plans, indexed

by Plan-i, -2, -3, -4, and -5, are generated. Plan-i is obtained using the BCRT

optimization scheme described above with De,=70 Gy. Plan-2 is obtained by prescribing

the whole target a uniform dose of 70 Gy. Plan-3 and -4 are similar to Plan-2 except that

the dose is escalated to 81 Gy and 91 Gy 12 , 14, respectively. Plan-5 is the SIB IMRT

plan with the same prescribed doses as that of the BCRT. In Plan-i to -4, the objective

function expressed in Eq. (9) is used and in Plan-5 the conventional dose-based quadratic

objective function is adopted. The optimization parameters (maximum dose constraints

and importance factors) in the dose-based method were adjusted by trial-and-error to

obtain the "optimal" plan. The same beam configuration (five equally spaced 15MV

photon beams with gantry angles of 00, 720, 1440, 2160, and 2880 in IEC convention) is

used in generating the five plans.

In the second example we hypothetically introduced a higher functional unit

density region in the rectum (RRegion 2 as shown in figure 3a) in addition to three

biologically different target regions. The functional unit density of the RRegion 1 is

assigned a value of 1 and that of the RRegion 2 is set to be 4. The same set (p01 , a,, Y')

as the previous example and a reference dose of 70 Gy are assigned to the prostate gland.

The parameters for other target regions are listed in Table II. Once again, five IMRT

plans are generated: Plan-i is obtained using the proposed selective dose escalation

scheme, Plan-2, -3, and -4 are generated using different uniform prescription doses (70,

81, and 91 Gy) and Plan-5 is SIB plan with the same prescription as Plan-i but is

optimized using the conventional quadratic objective function. In generating these five

plans, seven equally spaced 15MV photon beams (00, 510, 1030, 1540, 2060, 2570, and

3090) are employed.

III. RESULTS
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A. Example 1: Prostate case with four biologically different regions

In the first example, based on Eq. (7) and the parameters listed in Table II, the

prescription doses to the target region 2, 3 and 4 are determined to be 85 Gy, 119 Gy and

75 Gy, respectively. In order to examine the capability of the BCRT inverse planning

system in producing an extremely nonuniform dose within a target volume, we have used

an "extreme" combination of {p, a, y}, which leads to an exceedingly high prescription

dose in region 3 (119 Gy). Figures lb-d show the isodose distributions of Plan-i in a

transverse slice and two sagittal slices. The EDVH of the target and the DVHs of the

sensitive structures are plotted in figure 2 for Plan-I in solid curves. For comparison, the

corresponding EDVHs and DVHs of Plan-2, -3, -4, and -5 are also shown in the figures

as dashed, dotted, dash-dotted and dash-dot-dotted curves. As seen from figure 1, all

regions in the prostate are well covered by their prescription doses and the sensitive

structures are well spared. Even in this "extreme" case, it seems that the inverse planning

system can satisfy the biological requirement. A steep dose gradient is found at the

interface between the target and the rectum. A comparison of the target EDVH in figure

2a indicates that above 98.5% of the target voxels achieved their desired doses in Plan-I

and Plan-5. However, for the uniform dose escalation scheme, the desired doses in some

regions (region 2, 3 and part of region 4 in Plan-2; region 2 and 3 in Plan-3; and region 3

in Plan-4) are not achieved. We found that, in Plan-I, the doses to the surrounding

sensitive structures are not significantly increased compared with those of Plan-2, despite

of the fact that some voxels in region 4 receive a dose as high as 119 Gy. In Plan-i, the

rectum, bladder and femoral heads are better spared in comparison with Plan-3, -4.

However, by comparing the DVHs of Plan-I and -5, it is noticed that, although the target

coverage in Plan-5 is similar to that in Plan-i, the sensitive structures in Plan-5 receive

much higher doses than Plan-I, indicating that the proposed approach can increase the

sensitive structure sparing compared with the conventional dose-based quadratic

objective function. In addition, as can be expected, the target doses in Plan-i and -5 are

less uniform in the target volume in comparison with that of Plan-2, -3, and -4. This is

more pronounced in the target region 1, where about 50% of the volume receives a dose

larger than 85 Gy as shown in figure 2b, resulting in an effective doses above 120% in
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-50% of the target voxels (see figure 2a). However, the increase of dose homogeneity is

desirable here provided that the NTCPs are not compromised.

Table III lists the calculated TCPs for the targets and NTCPs for the sensitive

structures with consideration of heterogeneous biology in all plans. It is seen that the

overall TCPs for the three plans with uniform target dose prescriptions (Plan-2, -3, and -

4) are all less than that of the BCRT plan (Plan-i) and SIB plan (Plan-5). This is

understandable because, in Plan-2, -3 and -4, some target regions (such as target region

3) receive doses much less than the desired doses. For example, in Plan-4, the TCP for

target region 3 is only 0.461. Even if the TCPs for region 1, 2, and 4 are all close to 1.00,

the resultant total TCP for Plan-4 is 0.461. In contrast, the TCPs of Plan-1 and Plan-5 are

0.984 and 0.981, respectively. Furthermore, we found that the NTCPs of the sensitive

structures in Plan-I are very close to Plan-2, significantly less than Plan-3, -4 and -5. For

example, the rectum NTCPs are 0.21% for Plan-i and 0.20% for Plan-2. These are

increased to 0.65%, 1.84% and 0.89% for Plan-3, -4 and -5, respectively. Again, although

similar overall TCPs are achieved for the BCRT and dose-based SIB IMRT plans when

the same dose prescriptions are used, the rectum NTCPs are significantly reduced using

the proposed formulism. This is consistent with our previous study of the objective

function in the context of conventional IMRT aiming to deliver a uniform dose to the

target volume (49).

B. Example 2: Prostate case with three biologically different regions and

nonuniform importance in rectum

In the second hypothetical example, there are three biologically different regions in the

prostate and two functionally different regions in the rectum. The prescription doses for

the three target regions are 70 (reference dose), 99 and 121 Gy, as determined by Eq. (7)

with the biological parameters listed in table II. Figures 3b-f show the isodose

distributions of Plan-1 in three transverse slices and two sagittal slices. The EDVHs and

DVHs of the target and sensitive structures for Plan-i to Plan-5 are plotted in figure 4 as

solid, dashed, dotted, dash-dotted and dash-dot-dotted curves. Similar to the previous

example, in Plan-I, all regions in the prostate are well covered by a dose comparable to

the prescription and the sensitive structures are well spared. The dose gradient at the
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interface between the target and the rectum is very sharp for all the plans. From figure 4a

we find that above 98% of the target voxels achieved their desired doses in Plan-1. As a

consequence of incorporating functional unit density information in inverse planning, the

rectum sparing is even better than that of Plan-2, much better than that of Plan-3, -4.

However, we notice that the sparing of the femoral heads in Plan-I is not as good as that

in Plan-2, -3 and -4. This is because high intensity beamlets that pass through the femoral

heads are needed to adequately irradiate the target region 3, as seen from figures 3b and

3c. In addition, similar to the first example, the target coverage in Plan-5 is close to that

in Plan-i, but the doses to the sensitive structures in Plan-5 are much higher than that in

Plan-1.

Table IV lists the calculated TCPs and NTCPs for all plans. Once again, we found

that the TCP of the target in the proposed BCRT technique is much higher and the NTCP

of the rectum is lower compared with those obtained using the conventional uniform dose

escalation schemes. Remarkably, the overall TCP for the target is increased from 0.823 to

0.982 and the NTCP of the rectum is reduced from 3.1% to 0.40% when Plan-4 is

replaced by the selective dose escalation scheme (Plan-i). Again, we found that, for

similar overall TCPs, the rectum NTCPs of the BCRT plan are much lower in comparison

with that obtained using dose-based SIB scheme.

IV. DISCUSSION

Eq. (7) provides a general formula for determining the desired target dose distribution

based on the known biology information of the system and represents one of the main

results of this study. A few special cases are worth discussing here. First, when the

biology distribution is uniform in the target, a uniform dose of Dref is desired. This is

consistent with previous studies 3 7 and existing clinical knowledge.

When the clonogen density p is nonuniform while the values of a and y are

constant across the target, we have

[ 1 , (10)
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which is identical to the formula obtained by Webb and Nahum 3 6 . Eq. (10) indicates that

the desired dose depends on the tumor cell density logarithmically and is thus relatively

insensitive to a variation in the clonogen density. Fordc4) =0.312, for example, even if the

clonogen density in a tumor voxel is 10 times higher than that of the reference situation,

the desired dose is only about 7 Gy higher than the reference value. A detailed discussion

of this special situation has been presented by Webb and Nahum 36 .

Another special case is that the tumor clonogen density and the proliferation rate

are constant and the radiosensitivity a is spatially nonuniform. Eq. (7) now becomes

r (,.cxefr' (LJ
S(i) = _ D (11),0 ax. al a,

The desired dose is approximately inversely proportional to the parameter ai and is thus

sensitively dependent on the value of parameter al'. This is similar to the conclusions of

Ebert and Hoban4 0 and Levin-Plotnik and Hamilton4 1 . For example, if a,' is reduced

from 0.312 (corresponding to 6x =0.26, fractional dose di =2.OGy and a/P3 ratio=10 Gy) to

0.18 (corresponding to cx =0.15, di =2.OGy, and a/P3 =10 Gy), the desired dose is increased

by about 70% (from 70 Gy to about 118 Gy).

If we keep the tumor clonogen density and radiosensitivety a' constant and only

allow the proliferation rate y to vary spatially, then

DT (i) = Dref + 1,(7i -Yres)AT. (12)

Thus the desired dose increases linearly with the proliferation rate. In this work the

potential cell-doubling times, Tp, used by King et a154 are adopted. Since Tp for a prostate

tumor is relatively longer, its influence on the desired dose is not very significant.

However, for other more rapidly proliferating tumors, the proliferation rate may play an

important role. In such situations, reducing the overall treatment time AT (e.g., using an

accelerated scheme) is helpful to minimize the influence of the proliferation rate.

We emphasize that the quadratic term in the linear-quadratic model plays an

important role in accounting for the fractionation effect. If only the linear term is kept, the

total dose D' (i) in Eq. (7) is no longer entangled with the fractional dose di. When the
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quadratic term is "switched on", the value of D T (i) depends not only the total reference

dose but also the fractional dose. For a large fractional dose, the total dose will be less,

and vice versa. In other words, the total dose received by a voxel is determined by two

contributing factors, one being the local biological parameters {p,a,y}, and the other being

the coupling between the fractional dose and the total dose. The latter is responsible for

the phenomenon that the total dose needs to be decreased when the number of fractions is

reduced. If the quadratic term were ignored, according to Eq. (7), the dose required at a

voxel would be much higher. For example, the desired doses for target region 3 in

Example I are determined to be 119 Gy and 135 Gy with and without inclusion of the

quadratic term, respectively.

We also would like to emphasize that in this study, the radiosensitivity a' and

proliferation rate y' are assumed to be constants during the whole treatment course. In

reality, both a' and y may change with time due to such biological processes as tumor cell

redistribution 5 6 and reoxygenation 5 7 . The time dependence of these factors may result in

a reduction of the desired prescription dose, and this effect should be investigated in the

future.

Comparing with the uniform dose escalation scheme, our study clearly suggests that

deliberately incorporating an inhomogeneous dose distribution significantly enhances the TCP

and reduces the NTCP. Physically, we believe that the significant improvement arises from

the more effective use of radiation in the newly proposed treatment scheme. A great deal of

dose is "wasted" in the conventional uniform dose escalation scheme. For example, in the first

example the increased doses in the target region 1 and 4 have almost no contributions to the

enhancement of the TCP when Plan-2 (70 Gy uniform dose to the prostate gland) is replaced

by Plan-3 (81 Gy) or Plan-4 (91 Gy). Even though part of the prostate receives high doses in

the selective dose escalation scheme (for example, 119 Gy in target region 3 of the first

example), the total deposited energy in the targets is still less than that of Plan-3 or -4. It is

thus not difficult to understand why deliberately nonuniform dose distributions can, in general,

reduce the radiation side-effects and represent a more intelligent way to irradiate the tumor

target.

A similar deficiency also exists in the current SIB approach. Although it is clear that

the regions with different tumor burdens should be given different doses, the specific
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values for the regions are determined in an ad hoc manner. The empirical boost dose could

be too low, in which case the tumor control is sacrificed, or too high, in which case other

parts of the system are compromised. The problem is aggravated when the tumor burden

varies continuously from point to point. In the proposed BCRT approach, the prescribed

dose is voxel-dependent and is determined based on the tumor biology distribution. In

addition, a more sophisticated objective function is developed to take the dose volume

effect and functional density information of the sensitive structures into account, resulting

in better sparing of the sensitive structures.

Finally, it should be recognized that our knowledge of radiobiological parameters

for tumors or normal tissues is still very crude and the validity of the model is still under

establishment. Therefore, the LQ model and the parameters adopted in the paper are fine

for a proof of principle but they should not be taken as more than that.

V. CONCLUSION

In the presence of nonuniform biology distributions, IMRT inverse planning is complicated by

the fact that it is not clear what represents the appropriate spatial dose prescription, which is

generally used as a landmark to guide the dose optimization process. In this work, we have

described a technique for deriving the prescription dose based on a LQ model with

consideration of the cell proliferation. The relation is quite general and can be used as

prescription dose to guide an arbitrary inverse planning objective function aimed to produce

customized dose distribution in accordance with the spatial biology information. For a given

patient, IMRT inverse planning now consists of two steps: Derivation of the prescription dose,

and beam profile optimization that produces as closely as possible this prescription dose. The

formalism proposed here lays a technical foundation for future BCRT development, allowing

us to escalate tumor dose more intelligently and effectively. When combined with state-of-the-

art biological imaging techniques, which promise to reveal detailed patient-specific biology

distribution information, this study may have significant implication for the management of

cancer in the future.
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Appendix

We present the detailed derivation process for Eq. (7) under the condition of equal mass

and volume for all target voxels.

Substituting Eq. (5) into the Eq. (6), we obtain,

a(m.D. ) 3(m rfDrf )2TCPi\ 1  -/ TCP ) = -TCP. (Al)
aTCP, - e TCPrej

Since A # 0, otherwise, TCP becomes zero according to the requirement of Eq. (6),

which corresponds to a minimum. If we assumed that mass for all target voxels is equal,

then Eq. (Al) becomes

TCP'a, =-TCPf aref (2
aTCP, - ref aTCPreS (A2)

From Eq. (2) we have

Di=4l In{- rAT + n[ , i In TCPII} (A3)

Substituting the expressions from Eq. (A3) for both Di and Dref into Eq. (A2), we have
a; ln(TCP1 ) = arej ln(TCPrf). (A4)

The desired doses, DT (i), producing maximum TCP with the constraint of constant

integral dose, can be obtained by substituting TCP1 and TCPref expressed in Eq. (2) into

Eq. (A4)

a; ref -y,(,e- 7,)AT - -J. (A5)

When volume for all target voxels is equal, Eq. (A5) becomes Eq. (7).
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Table I Dose-volume parameters of various sensitive structures used for calculating
NTCP in this study.

Sensitive structures n m D50,5 (Gy)

Bladder 0.50 0.11 80
Rectum 0.12 0.15 80

Femoral head 0.25 0.12 65

Table II Radiological parameters for the target regions in the two examples.

Targets p0 , (clonogen/cm3 ) ao (Gy-) y, (day-')

Region 2 5x 10 0.26 ln2/40
Example 1 Region 3 5x10' 0.13 1n2/40

Region 4 5x10 5  0.26 In2/10

Example 2 Region 2 5x106 0.20 In2/10
Region 3 5x 103  0.10 1n2/60
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Table III Comparison of TCP and NTCP for the four IMRT plans for Example 1.

Plan-] Plan-2 Plan-3 Plan-4 Plan-5
(BCRT plan) 70 Gy Uniform) (81 Gy Uniform) (91 Gy Uniform) (SIB plan)

Region 1 0.997 0.995 1.000 1.000 0.994
Region 2 0.998 0.642 0.995 1.000 0.999

TCP Region 3 0.989 0.000 0.002 0.461 0.989

Region 4 1.000 0.997 1.000 1.000 0.998

Overall 0.984 0.000 0.002 0.461 0.981

Rectum 0.212 0.196 0.652 1.84 0.885
NTCP Bladder 1.6x10-5 1.4x10-5 2.3x10s 4.2x105 3.6x105

01 -- 6 104 1041 -(%) Femoral head (R) 2.0x10" 2.1x10 2.6x10 1.75x10 3.9x10-

Femoral head (L) 1.2x10"5 2.0x10-6 7.0x10-4 5.26x10-4 6.9x10-5

Table IV Comparison of TCP and NTCP for the four IMRT plans for Example 2.

Plan-1 Plan-2 Plan-3 Plan-4 Plan-5
(BCRT plan) (70 Gy Uniform) (81 Gy Uniform) (91 Gy Uniform) (SIB Plan)

Region 1 0.997 0.995 1.000 1.000 0.968
TCP Region 2 0.989 0.000 0.587 0.981 0.987

Region 3 0.996 0.006 0.408 0.839 0.990

Overall 0.981 0.000 0.239 0.823 0.946
Rectum 0.397 0.414 1.46 3.12 1.25

NTCP Bladder 1.5x10-5 1.2x10"5 1.8x10-5 4.3x10-' 3.9x10"5
(%) Femoral head (R) 3.7x10-5 1.5x10-5 1.8x10- 5.3x10-5 2.3X10-5

Femoral head (L) 4.9x10-5 1.1x10-5 3.0x10-5 4.5x10"5 3.6x10-5
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Legends

Figure 1. A hypothetical prostate case with four biologically different regions (Example 1). (a)

Geometric shapes and locations of the targets and sensitive structures; (b)-(d): Isodose

distributions in an axial slice and two sagittal slices for Plan-i, generated by optimizing the

objective function with a nonuniform dose prescription derived from Eq. (7).

Figure 2. Comparison of EDVHs and DVHs of the BCRT plan (Plan-I), three uniform IMRT

plans (Plan-2: 70Gy, Plan-3: 8MGy, and Plan-4: 91Gy) and the SIB plan (Plan-5) in example 1.

(a): Target EDVHs for the five plans (Insert is the regular DVHs of the prostate target). The

normalized doses to the target region 1, 2, 3 and 4 are 70, 85, 119 and 75 Gy, respectively; (b)-

(e): DVHs of different target regions and sensitive structures for the five plans. The solid, dashed,

dotted, dash-dotted and dash-dot-dotted curves represent the results of Plan-i, -2, -3, -4 and -5,

respectively. The effective dose is defined as the physical dose at a voxel normalized by its

desired dose determined by Eq. (7).

Figure 3. A hypothetical prostate case with three biologically different regions and nonuniform

importance in the rectum (Example 2). (a) Geometric shapes and locations of the targets and

sensitive structures; (b)-(d): Isodose distributions in three axial slices and two sagittal slices for

Plan-I, generated by optimizing the objective function with nonuniform dose prescription derived

from Eq. (7).

Figure 4. Comparison of EDVHs, FDVHs and DVHs of the BCRT plan (Plan-i), three uniform

IMRT plans (Plan-2: 70Gy, Plan-3: 8MGy, and Plan-4: 91Gy) and the SIB plan (Plan-5) in

example 2. (a):The target EDVHs for the five plans (Insert is the regular DVHs of the prostate

target). The normalized doses to the target region 1, 2, and 3 are 70, 99 and 121 Gy, respectively;

(b): The rectum FDVHs for the five plans (Insert is the regular DVHs of the rectum); (c) -(e):

DVHs of different target regions and sensitive structures for the five plans. The solid, dashed,

dotted, dash-dotted and dash-dot-dotted curves represent the results of Plan-I, -2, -3, -4 and -5,

respectively.
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Abstract
Clinical IMRT treatment plans are currently made using dose-based
optimization algorithms, which do not consider the nonlinear dose-volume
effects for tumours and normal structures. The choice of structure specific
importance factors represents an additional degree of freedom of the system
and makes rigorous optimization intractable. The purpose of this work is to
circumvent the two problems by developing a biologically more sensible yet
clinically practical inverse planning framework. To implement this, the dose-
volume status of a structure was characterized by using the effective volume
in the voxel domain. A new objective function was constructed with the
incorporation of the volumetric information of the system so that the figure of
merit of a given IMRT plan depends not only on the dose deviation from the
desired distribution but also the dose-volume status of the involved organs. The
conventional importance factor of an organ was written into a product of two
components: (i) a generic importance that parametrizes the relative importance
of the organs in the ideal situation when the goals for all the organs are met;
(ii) a dose-dependent factor that quantifies our level of clinical/dosimetric
satisfaction for a given plan. The generic importance can be determined
a priori, and in most circumstances, does not need adjustment, whereas the
second one, which is responsible for the intractable behaviour of the trade-
off seen in conventional inverse planning, was determined automatically. An
inverse planning module based on the proposed formalism was implemented
and applied to a prostate case and a head-neck case. A comparison with the
conventional inverse planning technique indicated that, for the same target
dose coverage, the critical structure sparing was substantially improved for
both cases. The incorporation of clinical knowledge allows us to obtain
better IMRT plans and makes it possible to auto-select the importance factors,
greatly facilitating the inverse planning process. The new formalism proposed
also reveals the relationship between different inverse planning schemes and
gives important insight into the problem of therapeutic plan optimization.

0031-9155/04/225101+17$30.00 © 2004 lOP Publishing Ltd Printed in the UK 5101
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In particular, we show that the EUD-based optimization is a special case of the
general inverse planning formalism described in this paper.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An important issue in inverse planning is how to formalize the clinical goals to objectively
evaluate the figures of merit of different IMRT plans. Despite intense research effort in
modelling the clinical decision-making strategies (Amols and Ling 2002, Deasy et al 2002,
Earl etal 2003, Hou etal 2003, Lahanas etal 2003, Langer etal 1993, 1998, Lee etal
2000, Llacer etal 2001, Mohan et al 1994, Webb 2004, Xing etal 1999, Yan et al 2003),
the appropriate form of the objective function remains illusive. Presently, two types of
objective functions are widely used: dose or dose-volume histogram (DVH)-based (physical
objective functions) (Chen et al 2002, Cho et al 1998, Holmes et al 1995, Hristov et al
2002, Michalski et al 2004, Starkschall et al 2001, Shepard et al 2002, Xing et al 1998)
and dose-response-based objective functions (biological objective functions) (Brahme 2001,
Kallman et a 1992, Miften et a 2004, Mohan et a 1992, Wang et a 1995, Webb and Nahum
1993). The underlying difference between these models lies in what endpoints are used to
evaluate the treatment or which fundamental quantities are used to define the optimality. The
physical approach emphasizes the difference between the calculated and prescribed doses and
does not consider the nonlinear effects for tumours and normal structures. Dose-volume
constraints are often introduced to select a solution with certain shapes of the DVHs for the
target and sensitive structures. However, it is important to note that the construction of the
DVH constraints is a priori in nature. The use of constraints can only passively restrict
the accessible DVHs by narrowing the solution space, and the figures of merits of the physically
realizable plans are not changed as long as they satisfy the constraints. To reflect our preference
over certain DVHs for a structure, it is necessary to express the objective of the structure as a
function of the volumetric status, which has not been achieved up to this point. On the other
hand, biological model-based optimization proponents argue that plan optimization should
be guided by estimates of biological effects, which depend on the radiation dose through the
dose-response function. The treatment objective in biological model-based inverse planning is
usually stated as the maximization of the tumour control probability (TCP) while maintaining
the normal tissue complication probability (NTCP) to within acceptable levels (Brahme 2001,
Kallman etal 1992, Langer et al 1998, Mohan etal 1992, Wang etal 1995). In principle,
the biologically based models are most relevant for radiotherapy plan ranking. However, the
dose-response function of various structures is not sufficiently understood and, at this point,
there is considerable controversy about the models for computing dose-response indices
and their use in optimization. In reality, the use of dose-response indices for optimization
may lead to very inhomogeneous target dose distributions. Furthermore, it is difficult for
clinicians to specify the optimization criteria in terms of dose-response indices. This becomes
compounded when two or more independently optimized plans are to be combined. Because
of the problems, the use of biological model-based optimization has mainly been limited in
the research community and little effort has been made to implement the model in commercial
planning systems. Given the fact that biological outcome is the ultimate endpoint of radiation
therapy, the importance of the biological modelling and the biological model-based inverse
planning can never be overstated.
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To pin down the underlying problem of the current inverse planning formalism and
illustrate the need for a clinically more relevant approach, let us take parotid glands as an
example. It is well known that the clinical endpoint is the same if the glands are irradiated
with 15 Gy to 67%, or 30 Gy to 45%, or 45 Gy to 24% of the total volume (Eisbruch et a!
1999). If a dose-based metric, such as the commonly used quadratic objective function, is
used, the rankings for the three different scenarios would be completely different. Even with
the use of dose-volume constraints, it is difficult, if not impossible, to incorporate this type
of knowledge to correctly model the behaviour of the organ in response to radiation. Indeed,
a constraint in optimization acts as a 'boundary condition' during the optimization and does
not change the rankings of dosimetrically different plans. This example clearly reveals the
inadequacy of the conventional dose-based objective function and suggests the urgent need
for a clinically more sensible model. Obviously, a minimum requirement for the model is
that it should be consistent with the existing clinical outcome data. For parotid glands, for
instance, the three different DVHs mentioned above should be scored equally. This type of
'degeneracy' can be achieved by effectively integrating clinical endpoint data into the inverse
planning formulation. For a given patient, the specific DVH selection will be determined by
the optimization algorithm with the consideration of the dosimetric/clinical requirements of
other structures and the results will, of course, depend on the geometric and dosimetric details
of the given patient. The example, however, underscores the important role of the existing
clinical data in inverse planning and emphasizes the essential ingredients for a clinically
realistic objective function. Towards developing a biologically more sensible yet clinically
practical inverse planning formalism, in the following we propose a method to incorporate
clinical endpoint data into the construction of the objective function and attempt to bridge
the gap between the clinical decision-making process and the computational modelling. Our
study indicates that the clinical knowledge-based modelling allows us to objectively rank
IMRT plans according to their clinical merits and makes it possible to obtain truly optimal
IMRT plans with much reduced efforts.

2. Methods and materials

2.1. Dose-volume effect

Generally, the dose response of a structure with respect to the irradiated dose and volume is
complicated. The fact that the dose distribution in tumour or a sensitive structure is generally
inhomogeneous makes the establishment of such a relationship even more intractable. Over the
last two decades, attempts have been made by many researchers to capture the main feature(s)
of the dose-volume effects. A power-law model represents one of the successful techniques
in dealing with the dose-volume effects of sensitive structures (Lyman and Wolbarst 1987).
In this model an equivalent dose uniformly irradiating the whole organ, Dcq, can be used
to represent the situation in which a fractional partial volume, v, is irradiated to a dose, D,
by a simple power-law model: Deq = vl/nD. A remarkable characteristic of this model is
that, although only a single organ-specific parameter, n, is used, clinical and biological data
have shown that this power law holds well at low complication levels (Lyman and Wolbarst
1987, Schultheiss et al 1983). On the basis of this relation, Mohan et al (1992) introduced the
concept of effective dose to represent a non-uniform dose distribution in a sensitive structure.
Kutcher and Burman (1989) applied the same power model independently to each volume
element of the histogram and introduced the concept of effective volume to reduce the DVH
of an inhomogeneous dose distribution in a sensitive structure to a uniform dose distribution.
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Following their study, in this work we define the effective volume (AVcff)i for a voxel i with
volume AV and dose D,(i) as follows:

(AVcff)i = AV(Dc(i)/Dref)"/n (1)
and extend this concept to handle the voxels in the tumour target, where n is an organ-dependent
parameter, and Dref is the reference dose. For a sensitive structure, n is a small positive number
(0 < n < 1) and the value of parameter n reflects the architecture (serial or parallel) of the
sensitive structure. For a target, n should be assigned with a small negative value (-1 <
n < 0). The biological meaning of equation (1) is that for a sensitive structure a small volume
receiving a higher dose than a reference dose would be equivalent to a larger volume receiving
the reference dose; for a target, a volume with a lower dose would have a larger effective
volume. The effective volumes of all voxels reflect the DVH status of the given organ, and for
inverse planning, this permits us to deal with the complicated dose-volume effect in the voxel
domain.

2.2. Dose-volume-based objective function

The objective function, f, expressed as a function of the effective volume in the voxel domain
for an organ should take the form of

f = f({(AVeff)i}). (2)
Generally, the dose-volume effect suggests that the voxels receiving different doses are
inequivalent: the one with a larger effective volume (higher dose for a critical organ) should
be penalized more when compared to a voxel with a smaller effective volume (lower dose).
Thus we heuristically write thef in the following form:

f = I + qh 1: ri[Dc(i)/Dref] In + ??2 r D(IDllnI+..'" (3)

where equation (1) has been incorporated, ri is the importance factor of the ith voxel,
representing the intrastructural trade-off due to physical/clinical requirements other than
the dose-volume-based penalty, ?71 and q72 are phenomenological parameters of the model. In
equation (3), the third (and higher order) term emphasizes more the voxels with high effective
volumes, whereas the first and second terms ensure that the voxels with low effective volumes
receive an adequate penalty. We typically set ri = 1, unless there are other physical/clinical
considerations (e.g., when the density of clonogens varies spatially (Xing et a 2002)). In this
work, we set 171 = 1 and 12 = 73 =... =0.

2.3. Hybrid of dose-based and dose-volume-based objective functions

Equation (3) provides a good description of the dose-volume effect. With proper choice of the
parameter, n, the clinically observed dose-volume effect can be reproduced by the objective
function. In reality, other requirements, such as the target dose uniformity, should also be
considered. A more general form of inverse planning objective function can be written as a
hybrid of the dose-volume-based and the dose-based functions. In this situation, the overall
objective function of the system takes the form of

1 1N, k

F = IjrN"- 1: {I + ,1'[Dc(i)/Drrcf]"/ }jDc(i) - 0
T+= N, i=i

sý I N.
+ yErV- E 11 +,Is [V,.(i)/D•,.f ]'/"I}D, (i)k,, (4)

ar=]l i=1
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where t, and s, are the numbers of targets and sensitive structures, DTj(i) is the prescription
dose in target voxel i, subscripts r and a represent target r and sensitive structure a, Nr,
N., rr, r., nr, na, Dr,te, Dref, k, and k, represent the total numbers of voxels, structure
specific importance factors, n parameters, reference doses, power of dosimetric deviation
from the specified criteria for target r and sensitive structure a, respectively. The factor

ID,(i) - DT(i)]k for target or D,(i)k• for a sensitive structure represents the contribution
from dosimetric deviation from the ideal situation. If the k, and k, are set to zero, the objective
function becomes purely dose-volume driven. In particular, if we set kA, to zero and k, to a
nonzero value, the objective function for a target becomes a hybrid of dose-volume and dose,
whereas the objective functions for critical structures remain purely dose-volume based. On
the other hand, when all the n parameters in equation (4) are set to be +00, no dose-volume
effects are considered and equation (4) is reduced to the conventional dose-based objective
function.

2.4. Automatic determination of structure specific importance factors

The selection of structure specific importance factors, r, or r,. in equation (4), is generally
done empirically by trial and error. Here we describe an automated approach for solving
the problem. The key to success is to establish an effective method to express the structural
importance factor in terms of physically or clinically more meaningful quantities. For this
purpose, we write the importance of a structure into a product of two components: (i) a
generic factor parametrizing the relative importance of the organs in an ideal situation when
the goals for the organs are met; and (ii) a dose-dependent factor quantifying our level
of clinical/dosimetric satisfaction for a given plan. The first factor can be determined
a priori, and in most circumstances, does not need adjustment (generally speaking, the
value of r, is determined on the basis of the treatment modality and the patient's overall
condition), whereas the second one is responsible for the intractable behaviour of the trade-
off in conventional planning and can be automatically determined. This decomposition is
essentially to normalize the conventional importance factor in terms of our clinical goals for
the structures under discussion. Because of this decomposition, the meaning of the importance
factor becomes more transparent and the determination of the factors becomes straightforward.
Mathematically, we write r, = rgrd, where rg represents the first contribution described above
(the desired weighting among different structures in an ideal situation), and rd is the second
component and is defined as a function of NTCP for a sensitive structure. In this study rg
was set empirically (see tables 2 and 3 for examples). r~d is updated according to the DVH
or the dose distribution during the optimization process and reflects the most current status of
trade-off in the system. Generally, the importance of a sensitive structure should be increased
in the next iteration if NTCP is high, and vice versa. We found that a simple linear relation
between rgd and NTCP,

drd = NTCP, + 3, (5)

describes the trade-off behaviour of the system well, where the value of NTCP, depends on
the dose distribution at the current iteration for structure a, and 3 is a cut-off factor for NTCP,
which is introduced to ensure the sensitive structure receives a minimum penalty even if its
NTCP is close to zero. We set 8 as an organ-independent constant of 0.01%.

The NTCP was assessed using Lyman's model in this study. For non-uniform irradiation,
the Kutcher-Burman (1989) effective-volume DVH reduction method is used to transform
a DVH into a uniform irradiation on an effective partial volume. Model parameters (n, m,
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TD5 0/5) used in this study were those fitted to the model by Burman et al (1991) for the normal
tissue tolerance data compiled by Emami et al (1991).

2.5. Computational algorithm

After considering the automatic trade-off strategy, the generalized objective function takes the
following form:

I N1 - (i)lk
F = Z rr,- • jI +, ?[Dc(i)/D,,rcf]i/0 }jDc(i)- Do

s. N,

+ - 1 {1 + 7'[Dc(i)/D,,rf]/ }D,(i)k,. (6)

We implemented a software module to optimize the objective function (6) in the PLUNC
treatment planning system (University of North Carolina, Chapel Hill, NC). The ray-by-ray
iterative algorithm (SIITP) reported earlier (Xing et al 1998) was employed to obtain the
optimal beam intensity profiles. The values of k, and k, in equation (6) were set to be 2, but
the behaviour of the system for a few other combinations of k, and k, were also checked for the
prostate case. The reference dose, D,,rcf, was chosen to be TD5 /5 of the corresponding critical
organ. For the target, DT,ref was set as the prescription dose. Figure 1 shows the flow chart
of the calculation process. In the current study we specify a maximum number of iterations
as the termination condition of the optimization process. The DVHs can be inspected in each
iterative step to visually monitor the optimization process.

2.6. Case studies

Two cases, a prostate case and a head-neck case, were used to evaluate the proposed inverse
planning formalism. The optimization results were compared with those obtained using the
conventional dose-based optimization method, which was described in detail by Xing et al
(1998). The optimization parameters in the dose-based method were adjusted by trial-and-
error to obtain an 'optimal' plan.

In the prostate case, the target volume included the prostate and seminal vesicles. The
sensitive structures included rectum, bladder and femoral heads. All the IMRT plans used
identical configuration of five equally spaced 15 MV photon beams with gantry angles of
00, 720, 1440, 2160 and 2880 (in IEC convention). The plans were normalized to deliver the
prescription dose of 70 Gy to 99% of the target volume. The parameter n, was chosen to be
-0.2 for the target. The parameters used in the NTCP calculations of the rectum, bladder and
femoral heads are listed in table 1. Table 2 summarizes the optimization parameters for both
the newly proposed and dose-based approaches.

For the prostate case, we also studied the influence of two more combinations of k, and
k,. These included (k, = 2, k, = 4) and (k, = 0, k, = 2). In the latter case, we have included
a higher order term of the dose-volume effect (the third term in equation (3) with 02 = 1)
to ensure that the high effective volume voxels are penalized enough in the absence of the
dose-based factor.

In the head-and-neck case, the organs at risk included the eyes, optic nerves, optic chiasm,
brainstem, spinal cord and parotids. Two targets were the gross target volume (GTV) and the
clinical target volume (CTV), which includes the microscopic disease region surrounding the
GTV. The plan was normalized to deliver a prescription dose of 70 Gy to at least 99% of
the GTV and 62 Gy to at least 95% of the CTV. Nine equally spaced 6 MV coplanar beams
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Figure 1. A flow chart of the proposed optimization process.

Table 1. The radiological parameters for various sensitive structures used in this study.

Sensitive structures n m D 501 5 (Gy) D515 (Gy)

Bladder 0.50 0.11 80 65
Rectum 0.12 0.15 80 60
Femoral head 0.25 0.12 65 52

Eye lens 0.3 0.27 18 10
Optic nerve 0.25 0.14 65 50
Optic chiasm 0.25 0.14 65 50

Spinal cord 0.05 0.175 66.5 47
Brainstem 0.16 0.14 65 50
Parotid 0.70 0.18 46 32

(00, 400, 800, 1200, 1600, 2000, 2400, 2800 and 3200) were used for this case. The parameter

n, was -0.5 for both GTV and CTV. The parameters used for the computation of the NTCPs
of the sensitive structures are also obtained from the same source stated earlier and are listed
in table 1. The optimization parameters for both the two techniques are summarized in
table 3.
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Table 2. Summary of the optimization parameters used in the dose-based and proposed approaches
for the prostate case.

The dose-based approach The proposed
approach

Relative Target prescription Generic
importance and OAR tolerance importance

Organs factors doses (Gy) factors (r,)

Target 5.0 78 5

Bladder 1.2 48 2
Rectum 1.8 43 2

Femoral head (R) 1.0 32 1

Femoral head (L) 1.0 32 1
Normal tissue 0.5 65 0.3

Table 3. Summary of the optimization parameters used in the dose-based and proposed approaches
for the head-and-neck case.

The dose-based approach The proposed
approach

Relative Target prescription Generic

importance and OAR tolerance importance

Organs factors doses (Gy) factors (rg)

GTV 3.0 70 4.0

CTV 4.0 62 6.0
Spinal cord 2.0 30 3.0

Brainstem 1.5 30 2.0
Left optic nerve 1.0 25 1.0

Right optic nerve 1.0 25 1.0

Left eye 2.0 6 3.0
Right eye 2.0 6 3.0

Left parotid 1.2 25 1.0

Right parotid 1.2 25 1.0
Optic chiasm 1.0 25 1.0

Normal tissue 0.5 40 0.5

3. Results

3.1. Prostate IMRT plans

Figures 2 and 3 summarize the results of the two IMRT plans obtained using the newly
proposed and conventional techniques. Figure 2 compares the isodose distributions in two
transverse slices and a sagittal slice for the two plans. The DVHs of the target and sensitive
structures are plotted in figure 3, in which the solid and dashed lines represent the DVHs
obtained using the new and conventional approaches, respectively. The calculated NTCPs of
rectum, bladder and femoral heads for both IMRT plans are listed in table 4. According to the
table, it is seen that the NTCPs of the sensitive structures are improved significantly. For the
rectum, for example, the NTCP is reduced from 0.45% to 0.03%. Our results also indicate that
the main compromise in a prostate IMRT treatment seems to be between the tumour coverage
and the rectum complication because the NTCP of the rectum is much higher than that of other
sensitive structures.
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Axial 1 Axial 2 Sagittal

(a)

Axial 1 Axial 2 Sagittal
(b)

Figure 2. Comparison of the isodose distributions of the two prostate IMRT plans: (a) the
conventional dose-based approach; (b) the newly proposed approach.

Table 4. Comparison of the NTCP for the two IMRT plans for the prostate case.

NTCP (%) The dose-based IMRT plan The proposed IMRT plan

Bladder 0.017 0.00030

Rectum 0.45 0.029
Femoral head (R) 0.000 076 0.000 0038

Femoral head (L) 0.000032 0.000015

The above results demonstrate that, for comparable target coverage, the new inverse
planning technique greatly improves the critical structure sparing, especially the rectum
sparing. By comparing the isodose distributions of the two plans (figure 2), it is seen that the
dose gradient at the interface between the target and the rectum is much steeper for the IMRT
plan obtained with the new formalism. Furthermore, it is intriguing that the non-sensitive
structure normal tissue also receives fewer doses in comparison with that of the dose-based
optimization. Our results suggest that the improvement in the critical structure sparing is
achieved not at the cost of higher target dose inhomogeneity, which is commonly seen in
IMRT plan optimization.

The resultant DVHs when k, = 2 and k, was increased from 2 to 4 in equation (6) are
plotted in figure 3 as the dotted curves. While the target dose uniformity is improved when
the kr increases, the doses to the rectum and bladder are worsened. The results make intuitive
sense as when the k, increases, more penalty is applied towards dosimetric deviation from the
prescription. The DVHs when the objective function for the target is a hybrid of dose-volume-
and dose-based functions (k, = 2) and that for the sensitive structures are purely dose-volume
based (k, = 0) are shown in figure 3 as dash-dotted curves. In this case, a high order term
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Figure 3. Comparison of DVHs of the prostate IMRT plans obtained using the proposed approach
(solid curves) and the conventional dose-based approach (dashed curves). The dotted curves
represent the results obtained with k, = 4 and k,. = 2 in equation (6). The dash-dotted curves are
the DVHs with k, = 2 and k, = 0 (a higher order term, the third term in equation (3), was included
during the optimization).

of the dose-volume effect in equation (3) was added to ensure that the high effective volume
voxels are penalized enough in the absence of the dose-based factor. Interestingly, as can be
seen from figure 3, the results so obtained were very similar to that obtained with the hybrid
objective function.

3.2. Head-and-neck IMRT plans

Figure 4 shows the isodose distributions obtained using the two different planning techniques
in three transverse slices, one sagittal slice and one coronal slice for the two plans. Figure 5
compares the DVHs of the targets and sensitive structures, in which the solid and dashed
lines represent the DVHs obtained using the newly proposed and conventional approaches,



IMRT inverse planning 5111

Prainstm -

(((a)C

(a) Axial 1 (a) Axial 2 (a) Axial 3 (a) Coronal

(b) Axial 1 (b) Axial 2 (b) Axial 3 (b) Corona]

(a) Sagittal (b) Sagittal

Figure 4. Comparison of the isodose distributions of the two head-and-neck IMRT plans: (a) the
conventional dose-based approach; (b) the newly proposed approach.

Table 5. Comparison of the NTCP for the two IMRT plans for the head-and-neck case.

NTCP (%) The dose-based IMRT plan The proposed IMRT plan

Spinal cord 0.043 0.0025
Brainstem 0.012 0.0040

Left Eye 0.27 0.18
Right Eye 0.24 0.12
Left parotid 0.21 0.056
Right parotid 0.22 0.064

Optic chiasm 0.00024 0.000 064
Left optic nerve 0.000 064 0.0000075
Right optic nerve 0.000 043 0.000 025

respectively. The calculated NTCPs of eyes, optical nerves, optical chiasm, brainstem, spinal
cord and parotids for both plans are shown in table 5. As seen from the isodose distributions
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Figure 5. Comparison of the DVHs of the two head-and-neck IMRT plans obtained using our

newly proposed approach (solid curves) and the conventional dose-based approach (dashed curves).

(figure 4) and DVHs (figure 5), with comparable GTV and CTV dose coverage and dose
homogeneity, the doses to the sensitive structures are dramatically reduced. The dose reduction
is particularly pronounced in the spinal cord, brainstem, parotids and eyes. For the left and
right parotids, for example, the fractional volume receiving a dose above 25 Gy is reduced from
35% to 20% and 15%, respectively. Consistent with the enhanced dosimetric conformality and
similar to the prostate case, much steeper dose gradient occurs near the boundary of the target
volume. The dose to the non-sensitive structure normal tissue is also lower in comparison
with the conventional IMRT plan. While the NTCPs of the optical nerves and optical chiasm
are small and it is difficult to draw a conclusion, from table 5, it is quite clear that the NTCPs
of the eyes, parotids, spinal cord and brainstem are improved significantly. We emphasize
once again that the significant improvement in sensitive structure sparing is achieved without
deteriorating the dose coverage of the GTV and CTV.
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Figure 5. (Continued.)

4. Discussion

The currently available dose-based objective functions do not truly reflect the nonlinear
relationship between the dose and the response of turnours and tissues, and it is highly
desirable to incorporate clinical outcome data in the formulation of inverse planning to guide
the plan optimization process. While the dose dependence of a clinical endpoint may be
degenerate in the sense that it may be caused by a variety of dose distributions or DVHs,
there exists no mechanism in conventional inverse planning to model the phenomenon. The
irradiation of parotid glands mentioned in the introduction represents an example of this. On
the other hand, the conventional objective function may impose some unrealistic degeneracy
that is inconsistent with clinical experience. For example, assume that in a treatment plan the
prescription dose to the target is 70 Gy and that the tumour is divided into two parts with the
same volume, one receiving a dose 60 Gy and another 80 Gy. The penalty values of the two
scenarios would be the same according to the conventional quadratic function. Obviously, the
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two different dose distributions would lead to different outcomes. The cold part, which would
greatly diminish the tumour control, is more detrimental than the hot spot.

In this paper we have established a general inverse planning framework in which the
penalty at a voxel depends not only on the dose deviation from the desired value but also
the dose-volume status of the involved organs. The technique circumvents the problems
mentioned above and makes it possible to take advantage of the clinical outcome data. Our
study shows that the incorporation of existing clinical knowledge can greatly facilitate the
inverse planning process and allows us to obtain better IMRT plans. For the same target dose
coverage, the critical structure sparing was substantially improved for both cases. Physically,
we believe that the superior performance of the new formalism arises from the adequate
modulation of the voxel dependent weighting induced by the dose-volume factor f (see
equations (3) and (4)). In conventional dose-based objective function, f - 1, and a tacit
assumption that all points within a structure are equivalent has been made. The use of dose-
volume factorf given by equation (3) enables us to weight different voxels according to the
local doses. In this way, we can effectively 'boost' those target regions where the doses are low
or penalize more those sensitive structure regions where the doses are high. The dose-volume
induced voxel inequality is an important feature of the new inverse planning formalism and is
the main driving-force in improving the dose distributions.

The use of clinical knowledge can also facilitate the determination of the structure specific
importance factors. While the general influence of the importance factors on the solution is
known, the specific response of the plan to a variation in the factors is not clear until the dose
optimization is done, which necessitates a manual trial-and-error adjustment of the factors
to achieve an acceptable trade-off. The underlying deficiency of the conventional approach
is that the importance factors are purely heuristic and lack physical/clinical meanings. In
this work we proposed a new scheme for modelling the trade-off and develop an algorithm
to auto-determine the factors. The importance of an organ was written into a product of a
generic and a dose-dependent factor. The latter was related to the corresponding TCP or
NTCP. After the beam optimization, the dose-dependent factors were increased or decreased
according to the values of TCPs/NTCPs. This procedure is similar to that reported by Xing
et al (1999), where a DVH-based 'distance' was used for the assessment of the trade-off
status after each optimization. In reality, other types of plan evaluation indices, such as
mean/maximum/minimum doses, can also be employed for the purpose. We noted that, with
the use of a new objective function, the final solution becomes much less sensitive to choice
of {rgf. This feature may have practical implications in simplifying the inverse planning
process.

We should acknowledge that the new technique, just like any other dose response-based
technique, may be limited by the scarcity and uncertainty of biological data and the limited
predictive power of the TCP/NTCP models. It is important to note, however, that the
TCP/NTCP is used as a relative ranking in our plan optimization algorithm instead of a
clinical decision-making tool. Because of the phenomenological nature of the modelling, one
may further modify the structure specific importance manually to achieve a certain clinical
goal. The proposed technique can, at least, provide us with a good starting point for the
fine-tuning. Our experience, along with the results shown in the above section, indicates that
the technique proposed in this work is capable of generating clinically sensible plans and is
much more efficient than the manual selection process.

Finally, we mention that the equivalent uniform dose (EUD)-based dose optimization
(Niemierko 1997, Wu et al 2002, Thieke et a 2003, Lian and Xing 2004) can be cast into the
realm of the above inverse planning framework and represents a special case of the general
formalism described in this work. Indeed, assuming EUD = (_l YIN Da(i))l/a,a=1/nand
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setting k, and k, in equation (4) to zero, we can rewrite equation (4) into
t'

F = rr [1 + IA (EUD/EUDrref)ar + rl'(EUD/EUD rref) 2ar +"" ]

T=l
St

+ 1 r, [I + rJ* (EUD/EUDref)a1 + i 1'(EUD/EUDr.f) 2a, +... ], (7)

which becomes a function of EUD. Different from the EUD-based model, the general hybrid
objective function given in equation (6) treats the dose-volume effect at a more fundamental
voxel level with the actual radiation dose considered, which is more flexible than the EUD
defined at a structure level. Because of this, other clinical/dosimetric requirements can easily
be integrated. Our study for the prostate case suggests that it is necessary to include the higher
order contribution(s) if equation (3) or (7) is used to appropriately model a sensitive structure.
Alternatively, a hybrid of dose-volume and dose-based objective function, as given by
equation (6), can yield equally good plans. In practice, equation (6) is quite broad
and seems to model the inverse planning system effectively. It may also find a natural
application in functional image-guided IMRT, where the goal is generally to produce a spatially
inhomogeneous dose distribution (Xing et a 2002). Finally, we note that the formalism does
not involve the prescription of EUD, which could be problematic for practical implementation
of an EUD-based model.

5. Conclusion

Inverse planning is an important step in IMRT and its performance crucially determines the
quality of IMRT treatment plans. In this work, we provide a mechanism for incorporating
clinical endpoint data into the inverse treatment planning process and established a clinically
practicable inverse planning framework. We employed the effective volume in voxel domain
to take the dose-volume effect of the involved organs into account. The new formalism
gives important insight into the problem of therapeutic plan optimization. An algorithm
for using computers to aid the determination of structure specific importance factors was
also developed. A key step for accomplishing the auto-determination of the importance
factors is the decomposition of the conventional importance factor into a generic importance
and a dose-dependent component. Two case studies were presented to demonstrate the
advantages of the proposed objective function. Comparison of the newly proposed approach
with the conventional inverse planning technique indicated that the algorithm is capable of
greatly improving the sensitive structure sparing with comparable target dose coverage and
homogeneity.
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Radiobiological treatment planning depends not only on the accuracy of the models describing the
dose-response relation of different tumors and normal tissues but also on the accuracy of tissue
specific radiobiological parameters in these models. Whereas the general formalism remains the
same, different sets of model parameters lead to different solutions and thus critically determine the
final plan. Here we describe an inverse planning formalism with inclusion of model parameter
uncertainties. This is made possible by using a statistical analysis-based frameset developed by our
group. In this formalism, the uncertainties of model parameters, such as the parameter a that
describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by
probability density function and are included in the dose optimization process. We found that the
final solution strongly depends on distribution functions of the model parameters. Considering that
currently available models for computing biological effects of radiation are simplistic, and the
clinical data used to derive the models are sparse and of questionable quality, the proposed tech-
nique provides us with an effective tool to minimize the effect caused by the uncertainties in a
statistical sense. With the incorporation of the uncertainties, the technique has potential for us to
maximally utilize the available radiobiology knowledge for better IMRT treatment. © 2004
American Association of Physicists in Medicine. [DOI: 10.1118/1.178545 1]

Key words: inverse planning, dose optimization, biological models, IMRT

INTRODUCTION including the varying radiosensitivity.24' 25 The objective
function was constructed based on a linear quadratic Poisson

Most intensity-modulated radiotherapy (IMRT) optimization model which approximates the probability of curing the pa-
systems at present use dose and/or dose volume-based objec- tient or inflicting injury. Two parameters in the model could
tive functions,1- 6 which guide the IMRT planning by impos- be calculated if the standard deviation of dose per faction
ing a penalty according to the difference between the com- was known. The optimization was thus executed correspond-
puted and prescribed doses. A well-known drawback of the ing to different standard deviations.
dose-based inverse planning is that the nonlinear dose re- We have recently presented a general statistical analysis-
sponse of tumor or normal structures is not fully considered, based inverse planning framework 26' 27 and applied it to in-
A number of mathematical models have been developed over vestigate the influence of model parameter uncertainties in
the years to better describe the biological effect of radiation, biologically based dose optimization. 28 The purpose of this
which include tumor control probability (TCP),7 normal tis-
sue complication probability (NTCP), 8 equivalent uniform paper is to provide a detailed description of the technique
dose (BUD)9 and the probability of uncomplicated tumor and addresses several important issues related to the dosedose(EU)9 nd he pobailiy o uncmplcatd tmor optimization in the presence of model parameter uncertain-
control (P±). 10,11 In parallel to these modeling efforts, con- timIzationcin the p nce of model parameter in
siderable works have also been done to use these biological ties. In our approach, the uncertainty of a model parameter is
models to construct more meaningful objective functions for quantified by a probability density function and its influence
therapeutic dose optimization.]-] 6  is then incorporated into inverse planning through the use of

Generally speaking, radiobiological formalism involves a statistical inference theorem.26 The technique is illustrated

the use of model parameters that are of considerable by using a hypothetical C-shaped tumor case, a prostate tu-

uncertainty.7' 17-22 For instance, the radiosensitivity a of mor case and a paraspinal tumor case with an EUD-based

Webb's TCP model varies from 0.157 to 0.090 Gy-1 when model. Considering that currently available models for com-

model parameters were fit to 103 patients' data.7 Biological puting biological effects of radiation are simplistic, and the
"margins" have been used to account for the variability in data they rely on are sparse and of questionable quality, the

radiation sensitivity. Similar to the use of a safety margin to proposed technique provides us with an effective tool to
account for the potential uncertainties in targeting a tumor, minimize the effect caused by the uncertainties in a statistical
this method assigns more conservative radiosensitivity val- sense. The treatment plans so obtained are generally less
ues to the tumor or sensitive structures to deal with the po- sensitive to the inter-patient variation and other types of un-
tential uncertainty of the parameter.23 Kaver et al. proposed a certainties that may otherwise influence the final treatment
stochastic optimization to account for clinical uncertainties, plan greatly.

2711 Med. Phys. 31 (9), September 2004 0094-240512004131(9)127111101$22.00 © 2004 Am. Assoc. Phys. Med. 2711
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METHODS AND MATERIALS

Statistical analysis-based inverse planning A 306' 46

The inverse problem as posed for IMRT consists of the
determination of the beamlet weight vector w when a desired
plan is prescribed. In a vectorial form, the dose to the points 280r 80°

in the treatment region depends upon the beamlet weights w
as IT

D, = d-w,(1
where d represents the dose deposition coefficients matrix,
expressing the dose deposited to any patient point when ir- 240

radiated with a unit weight beamlet. The total number of
physically realizable dose distributions D, in IMRT is enor- 200 160

mous and increases exponentially with the number of beam-
lets. Inverse planning is essentially a plan selection process
from the vast pool of physically realizable solutions. In a B 60 0

recent paper, Xing et al.26 introduced a statistical analysis- 70

based inverse planning technique. In this approach the com- so
monly used objective function is reformulated into a prob-
ability density function whose value gives the figure of merit
of a dose distribution. A virtue of the approach is that it
allows us to obtain solution in the presence of uncertainties 30
of the prescription parameters or other model parameters us-
ing a statistical inference technique. Application of the tech- =3
nique to deal with a system with a set of variable dose pre- 20 20270
scriptions has been described in another work of our group.27

Here we use the formalism for biological modeling based- 10
inverse planning in the presence of model parameter uncer-
tainties. To be specific, we use an equivalent uniform dose 10 20 30 40 5( 0 0

(EUD)-based objective function employed by Wu et al. 13,29 FIG. 2. (A) The sketch of the hypothetical case with C-shaped target and the

and discuss the consequences of the variation of model pa- beam setup for dose optimization. (B) The dose distribution corresponding
to the parameters listed in Table I and the probabilistic distribution shown in

rameter a and how to incorporate the fluctuations into in- Fig. 3 d2.

verse planning dose optimization to obtain statistically opti-
mal solutions.

EUD model and EUD-based objective function

The concept of equivalent uniform dose (EUD) for tumor
Sample beam profiles and was originally introduced by Niemierko as the biologically

compute dose ID,) equivalent dose that, if given uniformly, would lead to the

same cell kill in the tumor volume as the actual nonumiformSSample the parameter a according

to a given probability density funcuion dose distribution. Recently, Niemierko et al. suggested a
phenomenological form9"3'30

[ Compute EUD (Eq.2) ]Il

EUJD=(j (2)SCalculate conditional probability]
(Egs. 7 and 8)

.......................................... i ........................................... for both tumor and norm al tissues, where N is the number of
com-putejoint probability voxels in the structure, Di is the dose delivered to the ith

voxel, a is the tumor or normal tissue-specific parameter that
Calculate overall objective function describes the dose-volume effect. EUD described in Eq. (2)

1is the general mean of the non-uniform dose distribution.
According to the mathematic properties of the function,3'

oetheo for a =-0, the EUD is equal to the maximum dose, and for
timality criterion? Yes. Output plai a= -0c, the EUD is equal to the minimum dose. Tumors

Nro. generally have large negative values of a, whereas serial
SSample new beam profdles critical structures (e.g., spinal cord and rectum) have large
and re-eompute dose (D,) positive values and parallel critical structures that exhibit a

FIG. 1. The flow chart of the optimization process with the inclusion of large dose-volume effect (e.g., liver, parotids, and lungs)
model parameter uncertainty, have small positive values.

Medical Physics, Vol. 31, No. 9, September 2004
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TABLE I. The conventional EUD-based optimization parameter for the hy- TABLE II. The conventional EUD-based optimization parameter for prostate
pothetical IMRT treatment of a C-shaped tumor, cancer.

PTV PTV" OAR NT PTV PTV' Bladder Rectum NT

a -10.0 10.0 6.0 6.0 a -10.0 10.0 6.0 24 6.0
EUD0 (Gy) 72 76 35 35 EUD0 (Gy) 72 76 35 35 35
n 20 20 6 6 n 20 20 6 6 6

'Contains parameters for the target treated as virtual normal tissue to limit 'Contains parameters for the target treated as virtual normal tissue to limit
dose inhomogeniety. dose inhomogeniety.

The objective function or figure of merit used to measure

the goodness of a dose distribution and guide the 1

optimization.i In the present paper, the system objective fOAR= (5)

function is given by 13 1 + ( EUD)

F=I fj, (3)
i

where the component subcore f 1 may be either for normal tissues and organs at risk (OARs). EUD0 is the
desired dose parameter for the target volume and the maxi-

I mum tolerable uniform dose for normal structures. Parameter
fT= /EUD0\n, (4) n is akin to the structure specific importance factor32 in the

1 + EUD conventional inverse planning formalism that parameterizes
our tradeoff strategy of different structure. The large n indi-

for tumors, or cates high importance.

A Target parameter distributionTarge ... -- d,2
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FiG. 3. The target and OAR DVHs of four optimal plans when parameter a is a fixed value (bar chart dl) and varies according to three different probabilistic
distributions (bar chart d2, d3, and d4).
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] and the overall objective function P of the system is a prod-

A - uct of Pm(EUD) defined in Eq. (9). That is

-. F= In(l/P)=- In Pro(EUD)
m

__74

S70 =-E lnE Pm,(EUDlak).P,(ak). (10)
m kil68m

66 Optimization method
64

.*is -W 0 1 0 iin As described above, the uncertainties of model param-

a eters, {ak}, are described by probability density functions
and they are incorporated into the overall objective function
of the system through the joint probability given by Eq. (9).
To obtain the optimal solution in the presence of model pa-

ITT% •rameters, all we need to do is to minimize the overall objec-

B 0.9 Objective function tive function given by Eq. (10).
The calculation process is schematically shown in Fig. 1.

0.7 For the computational purpose, the probability density func-
0.8 tion for each structure is discreted into seven equally spaced

•-0.5 •

. .. -. " points. We use the Fletcher-Reeves conjugate gradient opti-
mization algorithm33 to optimize the system. But any other

2 iterative or stochastic optimization can be also employed to

01 optimize the system. A common step in all optimization al-
400. "i ! " 160 lie gorithms is the evaluation of the objective function for a trial

a beam profiles (or computed dose distribution), which is
somewhat tedious here because of the appearance of multiple

FIG. 4. The EUD of the target and objective function when parameter a is ak's of the involved structures. Briefly, for a given trial beam
prescribed according to Fig. 3. profiles or dose distribution, the evaluation of the objective

function consists of four steps: (i) For a structure m, calculate

the EUD corresponding to each possible ak; (ii) calculate the
Incorporation of the variation distribution conditional probability for the target and OAR using Eqs. (7)
of the model parameter into inverse planning and (8), respectively; (iii) sum over all possible ak to obtain

We assume that ak in the EUD model varies according to the joint probability, given by Eq. (9); and (iv) sum over all

a simple Gaussian distribution structures to obtain the overall objective function value. Af-
ter the dose optimization, a set of optimal beam profiles and

P.(ak)-P', exp{-rJak-ao]}, (6) the corresponding dose distribution and other plan indices

where a 0 is the mean value, P', is a normalization constant are provided for the planner to assess the clinical relevance

and ak is one of the sampling values of a. For a given dis- of the obtained treatment plan.
tribution, the EUD and the corresponding figure of merit of
an IMRT plan vary with the sampling of a. We thus rewrite
Eqs. (4) and (5) as conditional probabilities for a sampled Test cases
ak: The new algorithm was tested using a hypothetical phan-

I tom case with a C-shaped target and two clinical cases (a
PT(EUDIak) = EUD0  , (7) prostate case and a paraspinal tumor boost treatment). The

1 + ý E-- size of the pencil beam defined at the isocenter was 0.5 cm.
The configuration of the C-shaped tumor case is shown in

Fig. 2(A). Nine 6 MV equi-spaced beams were used for the

POAR(EUDI ak)= EUD .. (8) treatment (0', 40', 80', 1200, 1600, 2000, 240', 280', and
1 U+ ( 320--respecting the International Electrotechnical Commis-

EUD0 ] sion (IEC) convention). The values of n and a in the EUD-

The objective function for a structure m in the presence of based objective function are listed in Table I. The parameter

uncertainty in a is expressed as the summation of a series of a in EUD model characterizes the dose-volume effect but its

joint probabilities value is generally not known accurately even for clinically
well studied organs. The influence of the uncertainty in the a

Pm(EUD)=E Pm(EUDlak)'Pm(ak), (9) value of a target or sensitive structure to the final treatment
k plan was studied and analyzed.
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FiG. 5. The target and OAR DVHs of four optimal plans when parameter a is a fixed value (bar chart d l) and varies according to three different probabilistic

distributions (bar chart d2, d3, and d4).

Similar study was carried out for the two clinical cases. objective function, fT, as a function of parameter a for the
The six 6 MV beam angles used for the IMRT prostate treat- four optimal dose distributions under different types of un-
ment were 0', 550, 135', 180', 2250, and 3050. Table II lists certainty distributions. The results are plotted in Fig. 4. For
some relevant parameters used for planning the case. For the plan d l, the EUD changes from 65 to 71 Gy when a is varied
IMRT paraspinal boost treatment, five 6 MV nonequally from - 10 to -70 and to 79 Gy when a is equal to 140. The
spaced coplanar beams were placed at the following angular objective function varies from 0.11 to 0.85 in the range of
positions: 950, 1400, 1750, 2250, and 2750. The target boostposiion: 9', 40' 17', 25' an 27'. he argt bost variation in a. For plan d4, the EUD is narrowed to a range
dose was prescribed to 16 Gy. Relevant parameters are listed v
in Table II. The planning goal was to find a dose distribution between 70 and 79 Gy. The EUD variations of plans d2 and

that covered the tumor volume as uniformly as possible, d3 are similarly reduced. These results suggest that the EUD

while maximally sparing the spinal cord, liver, and kidney. becomes much less sensitive to the variation in parameter a
in the plans obtained with some "built-in" distributions in

RESULTS AND DISCUSSIONS parameter a (i.e., plans corresponding to Figs. 3 d2 to d4).
The uncertainty of parameter a of the OAR can be simi-

The C-shaped tumor case larly included in the dose optimization process when its dis-

We first investigated the behavior of the system when the tribution is known. In the second study, we fixed the target

parameter a of the target EUD takes four different distribu- EUD parameter a = - 10 and allowed the parameter a of the

tions, as depicted in the bar charts shown on the right of Fig. OAR to take four different distributions as plotted in the

3, while keeping the parameter a of the OAR at a constant right of Fig. 5. The target and OAR DVHs for the four pos-

a0 = 6.0. In the case shown in Fig. 3 dl, the parameter a sible scenarios are shown in A and B. Once again, we found

takes only a single value, a 0 = - 10, which is a simple case that the final solution strongly depends on the distributions of
studied by Wu et al.13 The optimal plans for the four distri- the parameter a.
butions of parameter a differ significantly, as indicated by the The maximum doses of the OAR of the four plans vary
target and OAR DVHs shown in Figs. 3(A) and 3(B). The from 24 to 30 Gy. Note that the doses to the OAR in plans
isodose plot corresponding to the a-distribution shown in d2, d3, and d4 are less than that of plan A, where the param-
Fig. 3 d2 is plotted in Fig. 2(B). eter a is restricted to a single value, a0 = 6. This is explain-

To estimate the degree of sensitivity of the solutions able since the parameters a in plans d2, d3, and d4 are shifted
against a variation in a, we computed the target EUD and the up to higher values. As a increases, the EUD puts more em-
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0.70 FiG. 7. A transverse slice showing the anatomical structures delineated for
-100 -f0 " 0 5 160 150 the prostate tumor (A) and the corresponding optimized dose distribution

with the parameters listed in Table II and the probabilistic distributiona shown in Fig. 8(B).
FIG. 6. The EUD of the OAR and objective function when parameter a is

prescribed according to Fig. 5. Fig. 6, the EUD for this plan varies from 1 to 30 Gy when a

is changed from -80 to 140. On the other hand, the EUD

phasis on the high dose (recall that EUD becomes the maxi- changes for the rest three situations are much less for the

mum dose when a=-o). As a consequence of the increased same variation in a. The upper bound of the EUD is reduced
"effective" a value in the distributions shown in Fig. 5, d2, to 26 Gy for plan d4, 24 Gy for plan d2, and 23 Gy for plan

d3, and d4, the OAR dose is improved in comparison with d3. The objective functions of four plans show a similar

the plan obtained under the assumption of a fixed a value trend.

(Fig. 5, dl). Interestingly, the target DVHs shows that four The
distinct plans have very similar target coverage. It is well
known that in dose optimization there is generally no net Four IMRT plans with different types of pre-assumed un-
gain: an improvement in the dose to a structure is often ac- certainties were generated for a prostate tumor case [Fig.
companied by a dosimetrically adverse effect(s) at other 7(A)]. These include: (i) The a-parameters for both prostate
points in the same or different structures. The result here target and OARs are restricted to single values as listed in
suggests that, from a clinical point of view, it is possible to Table II. This plan serves as a reference whose DVHs are
have a great gain in one structure with a little sacrifice in shown in Figs. 8(A)-8(C) as dotted curves; (ii) Only the
another structure. How to find the truly optimal tradeoff rep- a-parameter of the prostate target takes a range of values, as
resents a practical subject that is worth of studying in the depicted in the right of Fig. 8(A); (iii) Only the a-parameter
future. of the rectum takes a range of values, as depicted in the right

As can be expected from the discussion in previous para- of Fig. 8(B); and (iv) The a-parameters of both prostate tar-
graphs, the solution obtained with a 0 = 6 (Fig. 5, dl) is more get and the rectum were allowed to take a range of values, as
sensitive to a variation in parameter a. Indeed, as seen from depicted in the right of Fig. 8(C).
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FIG. 8. DVHs for a prostate cancer case using the conventional optimization with fixed a-value (dotted line) and the newly proposed approach with the
inclusion of model parameter uncertainty (solid line). (A) Only the a-parameter for the target is assigned with a probabilistic distribution; (B) Only the
a-parameter for the OAR is assigned with a probabilistic distribution; (C) Uncertainties in the a-parameter are introduced for both the target and OAR.

DVHs for the plan using parameters defined in Table II When the parameter a in target EUD takes a Poisson distri-

are plotted with dotted curves and plans with the inclusion of bution as shown in the bar chart of Fig. 8(A), prostate dose

parameter uncertainty are drawn with solid curves (Fig. 8). homogeneity is significantly improved. The minimum dose

Medical Physics, Vol. 31, No. 9, September 2004



2718 J. Lian and L. Xing: IMRT optimization including the biological parameter uncertainty 2718

A

B.. No uncer.
With uncer. Target

Spine

600A

Liver0.3

= 4o-~

40o-

i 0.1
0--2

0

0 2 4 6 8 10 12 14 16 18 20 7 -60 -50 .40 -30 -20 -10

Dose (Gy)

C 100' No uc
- With uncer.

80- OAR
SpinePlOA

S40- 0.2

20- ie

0.0

' t ' 14 ' 16 820 3 6 9 12 18 21

Dose (Gy) a

FIG. 9. (A) A transverse slice showing the anatomical structures for a paraspinal case; (B) DVHs when the a-parameter for the target is assigned with a
probabilistic distribution; (C) DVHs when the a-parameter for the OAR is assigned with a probabilistic distribution.

increases from 55 to 67 Gy, and the maxim dose decreases crease significantly though the maximum dose remains simi-
slightly from 82 to 80 Gy. However the volumes receiving lar. The improvement of the target coverage and compromise

radiation dose for rectum, bladder and normal tissue all in- of OAR sparing is a natural outcome of the competitive re-
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TABLE Ill. The conventional EUD-based optimization parameter for paraspi- certainties on predicting long-term salivary function.21 The
nal tumor, statistical method proposed here provides a general frame-

PTV PTV' Spine Liver Kidney work to include various uncertainties in the dose optimiza-
tion process. With minor modification, the technique can be

a -10.0 10.0 6.0 6.0 6.0 extended to derive statistically optimal solutions in the pres-
EUD5 (Gy) 16 17 12 6.4 4.8

n 20 20 6 6 6 ence of other types of uncertainties.
As can be intuitively imagined, the inclusion of

aContains parameters for the target treated as virtual normal tissue to limit a-distribution will definitely change the final dose. Whether
dose inhomogeniety. it will improve or worsen the final dose distribution will

generally depend on the specific form of the a-distribution,

quirements for targets and OARs imposed on the system. and also the metric used to judge the goodness of a plan. If

The corresponding dose distribution with the target param- the original EUD-based objective function is used as the sole

eter defined in the bar chart A is shown in Fig. 7(B). metric for the judgment, the inclusion of a-distribution may

Next we considered the inclusion of parameter a uncer- make the plan worse. However, clinical decision-making is

tainty in EUD calculation in one of the critical structures- not made by a single function and a "worse" plan judged by

rectum [Fig. 8(B)]. The irradiated rectum volume for a dose the EUD-objective function may turn out to be clinically

below 60 Gy is less than that of a conventional plan with the more favorable. In other words, there is a gap between math-

parameter a fixed at 24. DVHs for the bladder, normal tissue ematical dose optimization and clinical decision-making.
and prostate do not change significantly compared to the plan The study seems to suggest that, while it is generally truewithout inclusion of parameter uncertainty, that there is no net gain in dose optimization,2 7 it is importantwithut ncluionof aramteruncetaity.to develop a method that is capable of optimizing not onlyLastly, we simultaneously replaced target and rectum pa- t eeo ehdta scpbeo piiigntolLasty, e siultneosly eplced argt ad retumpa- the objective function but also the next level of decision-
rameters with the distributions shown in Fig. 8(C). Similar to the objec tivefn tion but all of d e
that corresponds the prescription of Fig. 8(A), the prostate making. This kind of optimization will allow us to find the
coverage is improved. However, the rectum DVH in this case solution that may sacrifice a little (i.e., clinically insignifi-
is not worsen greatly because parameter a of rectum EUD cant) in one or a few structures but gain a lot in other struc-
was allowed to take a spectrum of values. For bladder and
normal tissue, although their irradiated volumes in the low
dose region are higher than those of the conventional plan, CONCLUSIONS
the volumes receiving high doses are reduced. We have proposed and implemented a technique for in-

corporating biological model parameter uncertainties into in-

The paraspinal tumor case verse treatment planning. The formalism is quite general and
does not prerequisite the specific form of uncertainty distri-

Three IMRT plans were generated for a paraspinal tumor butions of the involved model parameters. By including
case [Fig. 9(A)]. These include: (i) The a-parameters for both model parameter uncertainties, the final solution becomes
target and OARs are restricted to single values as listed in more robust and the treatment outcome will be less likely
Table III. This plan serves as a reference whose DVHs are influenced by inter-patient variation of biological character-
shown in Figs. 9(B) and 9(C) as dotted curves; (ii) Only the istics. With the increasing interest in radiation therapy com-
a-parameter of the target takes a range of values, as depicted munity to use biologically based models for treatment plan-
in the right of Fig. 9(B); and (iii) Only the a-parameter of the ning, this work provides an effective way to better account
spinal cord takes a range of values, as depicted in the right of for the known uncertainties in the model parameters and al-
Fig. 9(C). lows us to maximally utilize the available radiobiology

When a in target EUD takes a Poisson distribution as knowledge to facilitate patient care.
shown in the bar chart of Fig. 9(B), dose homogeneity is
slightly improved. However, this is achieved at the expense ACKNOWLEDGMENTS
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The dose optimization in inverse planning is realized under the guidance of an objective function.
The prescription doses in a conventional approach are usually rigid values, defining in most in-
stances an ill-conditioned optimization problem. In this work, we propose a more general dose

optimization scheme based on a statistical formalism [Xing et al., Med. Phys. 21, 2348-2358
(1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function,

which describes the user's preference over other doses in case the most desired dose is not attain-
able. The variation range of the prescription dose and the shape of the preference function are
predesigned by the user based on prior clinical experience. Consequently, during the iterative

optimization process, the prescription dose is allowed to deviate, with a certain preference level,
from the most desired dose. By not restricting the prescription dose to a fixed value, the optimiza-

tion problem becomes less ill-defined. The conventional inverse planning algorithm represents a
special case of the new formalism. An iterative dose optimization algorithm is used to optimize the
system. The performance of the proposed technique is systematically studied using a hypothetical

C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the
final dose distribution can be manipulated flexibly by tuning the shape of the preference function
and that using a preference function can lead to optimized dose distributions in accordance with the
planner's specification. The proposed framework offers an effective mechanism to formalize the
planner's priorities over different possible clinical scenarios and incorporate them into dose opti-
mization. The enhanced control over the final plan may greatly facilitate the IMRT treatment
planning process. © 2003 American Association of Physicists in Medicine.
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I. INTRODUCTION clinically desired solutions.26 -30'3 6 However, the constraints
are introduced in an ad hoc fashion and do not fully utilize

Inverse planning is used in intensity modulated radiation the partial information available from years of clinical inves-
therapy (IMRT) for deriving the optimal beam intensity pro- tigations because of their phenomenological nature. On a
files that produce the best possible dose distribution for a more fundamental level, the constraints are imposed a pos-

given patient.1-1 6 The dose optimization process is usually temor and controls the optimization passively. Our purpose

performed under the guidance of an objective function, in this paper is to develop a statistical analysis-based inverse

which measures the "distance" between the physical and the in for mis to devely utli ze therse

prescribed dose distributions.8' 17, 2 ° One of the common ob- planning formalism to more effectively utilize the prior

jective functions for inverse planning is the quadratic objec- knowledge. Instead of specifying a rigid prescription dose,

tive function, 3' 21'22 with importance factors assigned to the the formalism allows us to use a dose distribution as the

involved structures to prioritize their relative importance dur- input prescription to the system, providing a natural way for

ing the optimization process. 23- 25 The objective function is us to take advantage of the existing information of the sys-

defined as a global quantity based on general physical con- tem variables and promising to make the optimization out-

siderations. When the desired dose distribution is not attain- come more predictable and controllable.

able during optimization, a compromise solution is found In the next section we present the details of the new dose

using the algorithm's ranking. The compromise dose distri- optimization algorithm after a brief introduction of the con-

bution, however, is often not what the planner wants and cept of preference function. The formalism is then applied to

multiple trial and errors are needed to obtain a clinically a synthetic phantom case with C-shaped tumor target and a

acceptable IMRT plan. prostate case. Our results indicate that the statistical analysis-

A main problem of the existing IMRT planning algo- based formalism provides a general framework for inverse

rithms is the lack of an effective mechanism for incorporat- planning and is capable of producing conformal IMRT dose

ing prior knowledge into inverse planning.31 In the past, distribution. Coupled with the capability of the preference
there have been many attempts to introduce soft/hard con- function in customizing/formalizing our prior clinical knowl-
straints to steer the dose optimization process toward the edge, it is expected that the proposed technique will have a
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broad implication and potential to greatly facilitate an IMRT
planning process.

II. MATERIAL AND METHODS
A Preference function for

A. heoetcalbakgrun a sensitive structure
I Preference

In a vectorial form, the dose to the points in the treatment ' fnctio
region depend upon the beamlet weights w as Mosdesired for a target

dose

D,= d'w, (1)

where d represents the dose deposition matrix, expressing
the dose deposited to any point in the patient when irradiated 0 Tolerance Dose
with a unit weight beamlet vector. The inverse problem as
posed for IMRT is to find a set of beamlet weights that pro- FiG. 1. A sketch of preference functions for a target and a sensitive structure.

duce the optimal dose distribution by minimizing a therapeu-
tic objective function. The most used objective function has a for a target and sensitive structure. The most desirable dose

quadratic form and reads32 as for a sensitive structure should generally be set to zero. The

1 N conventional prescription scheme represents a special case of

F= I rJ[D,(n)-Dp(n)]2 ' (2) the general approach proposed here with the step function
form of the preference function. That is,

where N is the total number of voxels, r, is the importance 1, if Dp=Dp,
factor that controls the relative importance of a structure cr, P,(Dp) = (3)

and Dp and D, are prescribed and calculated doses, respec- 0, if Dp*DO
tively. To give another example, we write down the Gaussian

In inverse planning algorithm based on the quadratic ob- Tofgive another a we w
jective function [Eq. (2)], the dose prescription to the target preference function for a voxel n
or sensitive structure takes a rigid value. The minimization of Pn(Dp) = Po,, exp{- yn[Dp(n) -D°(n)] 2}, (4)
the objective function is realized by various algorithms like
simulated annealing, gradient methods, etc. 17,26,32,33 Indepen- where Po, is a normalization constant and yn represents the
dent of the used dose optimization algorithms, we will call Gaussian parameter. For a system comprising N voxels, the
these methods throughout the text conventional IMRT opti- total preference is given by a product of the preference func-
mization procedures. The problem is usually ill-posed and tions of all voxels:
may lead to negative fluence unless hard constraints are
introduced.3 Practically, it is not uncommon that the plans P= 17 Pn(Dp)
computed by what are called optimization systems are not

consistent with the expectation of the planner and that sev-
eral trial-and-error adjustments of the system parameters =171 P 0. exp{- yJDp(n)-D°(n)]2}. (5)
might be required to achieve a clinically acceptable plan.

Given a patient, the obtained plan can vary widely from one When a maximum likelihood estimator is used, it has
planer to the next, even within a department. In the following been demonstrated that the maximization of the logarithmic
we describe a more adaptable and "intelligent" statistical function of P or minimization of In(l/P), is equivalent to the
inverse planning formalism based on the concept of a pref- minimization of the conventional quadratic objective
erence function to better deal with the dilemma. function.31' 34 In this case, the Gaussian parameter y, in Eq.

(5), which commands the "spread" of the Gaussian around0
B. Preference function Do, is equivalent to the importance factor that controls the

relative importance of the structure and parametrizes theIn a recent paper, Xing et al.31 introduced the concept of ciia rd-f taey

preference function to weaken the rigid dose prescription

commonly seen in the existing inverse planning algorithms.
Its role is to allow a dose distribution to be considered in- C. Probability density-based dose prescription andinverse planning
stead of just a single value, and to quantify the degree of our
willingness to accept a prescription dose Dp in that range. The objective function defined in Eq. (2) uses a rigid
The preference function can be constructed heuristically dose, Dp. Since in most instances an ideal dose prescription
from clinical considerations. 31 The defined preference func- is not physically attainable, we resort to an expansion of the
tion states that the most favorable prescription dose for a prescription dose, over a certain interval. That is, we allow

voxel n is Dp(n) and that a different prescription dose is also the prescription dose to take a "probabilistic" distribution

acceptable, but with a smaller preference level. For illustra- around the most desired dose as specified by the preference

tion, in Fig. 1 we show a sketch of the preference functions function. For computational purpose, we divide the permis-
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sible prescription dose into a number of discretized values, Sample beam profiles and

{D'}, where i is the index of a possible prescription dose and compute dose (D,)P J
i = 0 represents the most desirable dose. The preference dis- .......................................... ...........................................
tribution prescription is usually normalized to unity. r e

In order to utilize the probability information character- prescription {Dle

ized by the preference function, we formulate the conven-
tional dose optimization into a statistical analysis problem. Compute preference function Co te plan ranking function

To proceed, let us take the quadratic objective function as an 1 for theiven (D I for theiyen (D

example. We rewrite the traditional quadratic objective func-...
tion (2) into ........................................................,

Cpent "probability"

f(D,)=foI- exp{-rJ[D,(n)-Dp(n)] 2}. (6)
nDoes the objective

where fo is a normalization constant. For a given prescribed tima-ity critenron? Yea.vOutputtplan

dose distribution, Eq. (6) measures the goodness of a calcu- Output r
lated dose distribution using an exponential scale, as com-
pared with Eq. (2). Equation (6) can be interpreted as a con- Sample new boam profiles

ditional probability and formally rewritten as

FiG. 2. A flow chart of the optimization process with the inclusion of pre-
f(DIDp) =f01- exp{-r,[D,(n)-Dp(n)]2}. (7) designed preference function information.

n

When the prescription dose is no longer a rigid dose, it is Note that the conventional quadratic objective function is a
conceivable that there are a number of optimum solutions, special case of the above general objective function when the
each corresponding to a sample of prescription doses. Math- prescription takes a rigid value for each structure, as de-
ematically, we now have two "probability" distribution func- scribed by Eq. (3).
tions. One is the preference function that characterizes our a The optimization process is schematically shown in a flow
priori preference over different prescription doses P(Dp), chart (Fig. 2). The beam profile is determined by minimizing
and the other is Eq. (6) that ranks a calculated dose for a the above objective function using a conjugate gradient op-
given prescribed dose, Dp. Our task is to find the solution timization algorithm. The details of the algorithm have been
that is statistically optimal with consideration of the variable discussed in a previous paper.33 Briefly, the calculation con-
prescription. For this purpose, we introduce the "joint prob- sists of three major steps: (i) assume an initial intensity pro-
ability" of the two "probability" distributions defined by file for each incident beam; (ii) compute the "joint probabil-
Eqs. (5) and (7). The function at a voxel n can be written as ity" given by Eqs. (8) and (9). For this purpose, we need to

sample all combinations of the prescription doses of different

Pn(D,) = I f(DcIDp)Pn(D.). (8) structures and compute the function given in Eqs. (5) and (7)
i Pfor each of these combinations; and (iii) optimization of the

multidimensional "joint probability" function. The second

The total preference function of the system is given by step is fairly computationally intensive because we must
compute the two functions for every sampling of the pre-
scription doses. In our calculation, we typically assign four

P=fl Pn(D,). (9) to seven discrete possible prescription doses for each struc-
t/ ture. A finer discretization of the prescription dose did not

seem lead to further improvement but would greatly increase
D. Optimization strategy the computation time. All calculations presented here are

Having the rigid prescription DP in (2) replaced by a performed on a Personal Computer (PC) with an Intel Pen-

range of prescribed doses, {D" }, the total preference func- tium® III 1 GHz CPU (Intel Corporation, Sunnyvale, CA).

tion is now given by Eqs. (8) and (9). For convenience, we The computation time needed to obtain an optimal solution
define objective function F = ln(I 1P) and derive the optimal for a given set of system parameters (including beam con-

solution by minimizing the F, which is equivalent to maxi- figuration, preference function, importance factors) is typi-

mize the preference function (9). The objective function now cally less than ten minutes.

reads as
III. RESULTS AND DISCUSSION

F= In(lI/P) A. A synthetic phantom case with a C-shaped tumor

= -In r- P, = - I In I fJ(DIDp) . PJ(D'). (10) To systematically study the performance of the statistical

n n i Panalysis-based inverse planning algorithm, we applied the

Medical Physics, Vol. 30, No. 4, April 2003



658 Lian, Cotrutz, and Xing: Therapeutic treatment plan optimization 658

A 30
40ý

280 80

200" 160
FIG. 3. (a) A sketch of a phantom case with a C-shaped
tumor. The dose prescription is set 100 (arbitrary units) to
the PTV and 0 to the circular OAR and normal tissue. (b)

B Dose distribution obtained using the "probabilistic" pre-
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scription shown in Fig. 4(a).
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technique to a C-shaped tumor case [Fig. 3(a)] with a variety loosen the constraint of the rigid dose prescription. This can
of preference functions and compared the results with that be better demonstrated by using the differential DVH for
obtained using the conventional approach with a fixed dose each situation. As seen from the differential DVH plots (the
prescription. Nine equally spaced 6 MV beams beginning at right column of Fig. 4), the width of the differential function
00 (IEC) were used in this study. The prescription doses to gradually increases, from 26.72, 28.59-30.39, as we gradu-
the PTV and OAR in the conventional IMRT plans were 100 ally increase the acceptance levels for the doses different
and 0 (the dose is in an arbitrary unit), respectively, from the most desirable dose (100). This series of calcula-

We first assigned three sets of symmetrical Gaussian dis- tions provides us with preliminary evidence that the final
tributions to the target while keeping the prescription to the dose distribution can be steered by varying the preference
sensitive structure at zero (Fig. 4). The Gaussian preference function.
functions were represented by three sets of preference levels Next, we constructed six sets of asymmetric preference
at seven discrete values (80, 87, 94, 100, 106, 113, and 120). functions for the target (Fig. 5 and Fig. 6). When higher
The center of the Gaussian functions was set at 100. The preference levels were assigned to the doses higher than 100,
preference levels for the seven doses are shown in Fig. 4 for we found that the target DVH is shifted to the high dose
each of the three situations studied here. The transverse dose region. Interestingly, even when an extremely low preference
distribution obtained using the statistical inverse planning (for instance, 1%) was assigned to the doses less than 100
formalism for the case shown in Fig. 4(a) is plotted in Fig. [Fig. 5(b)], a noticeable underdosing relative to the conven-
3(b). As expected, target inhomogeneity increases as we tional result was resulted. A similar phenomenon can also be
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FIG. 4. DVHs of the PTV, OAR, and normal tissue (NT) obtained using the conventional rigid dose prescription (dotted line) and the "probabilistic"
prescription (solid line). The Gaussian preference functions with different variances are shown in the middle panel. The right panel shows the differential
DVHs for the target.
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FIG. 5. DVHs of the PTV, OAR, and normal tissue (NT) obtained with the conventional rigid dose prescription (dotted line) and with the "probabilistic"

prescription (solid line). The bar charts on right show the asymmetrical preference functions.
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FIG. 6. DVHs of the PTV, OAR, and normal tissue (NT) obtained using the conventional rigid dose prescription (dotted line) and the new statistical inverse
planning method for a variety of preference functions shown on the right panel (solid line).

seen from the result shown in Fig. 5(c), where only 0.5%, dose plays an important role. In Fig. 6, we set the preference
0.7%, and 1% of preference levels were assigned to the dose levels for the doses less than 100 to be 0 and only assign
values of 80, 87, and 94. This observation seems to indicate nonzero preference levels for the doses higher than 100. It is
that the influence of the assigned preference level at a low seen that in all these situations the minimum target dose is
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FIG. 7. DVHs of the OAR and PTV when the prescription dose to the OAR is modeled by (a) a uniform distribution, (b) a bell-shaped function, (c) an
exponential decay function, and (d) a rigid value.

higher than that of the conventional plan. As a result of our OAR dose to take seven values: 0, 5, 10, 15, 20, 25, and 30
preference over higher doses, the fractional volume at any with the acceptance levels sampled from three different types
dose less than 100 is improved in comparison to that of the of prescription distribution: uniform [Fig. 7(a)], bell-shaped
conventional IMRT plan. In Fig. 6(c), we further exemplify [Fig. 7(b)], and exponential [Fig. 7(c)] functions. Figure 7(d)
the statistical analysis based inverse planning method by represents the conventional case with zero prescription to the
simplifying our preference to two doses (100 and 120), each OAR. The corresponding OAR and PTV DVHs are plotted
with 50% preference levels. In this situation, in addition to in the left panel of Fig. 7. When the preference was uni-
that the doses in the target are shifted toward higher values, formly sampled in the dose interval from 0 to 30, the result-
the target DVH exhibits a stepwise behavior: a plateau ap- ant dose to the OAR was found to be the highest, as indi-
pears at around 110, which is in the middle of the two pre- cated by curve A in Fig. 7. The best target dose coverage was
scribed doses. achieved in this situation. If the preference to a high dose

It is interesting to point out that the OAR sparing is im- was reduced, the DVH was gradually shifted to the low dose
proved as compared with the conventional IMRT plan in direction (curves B and C). It is not surprising that the best
most cases studied in Figs. 5 and 6, even when the target OAR sparing was achieved in the conventional case where a
dose is escalated. That is, the DVH of the OAR is not always zero dose was prescribed to the OAR. The target dose homo-
shifted toward higher doses, as would occur if a higher dose geneity was slightly improved in all cases when a probabi-
is prescribed in a conventional inverse planning system. In- listic prescription was given to the OAR. Similar to that de-
stead, the dose to the OAR remained unchanged or even scribed in the last paragraph, the results clearly demonstrate
lowered in some cases. A reasonable explanation for the ob- that the "probabilistic" prescription allows us to control the
served phenomenon is that, when a rigid dose prescription is OAR dose distribution and indicate the usefulness of the
replaced by a range of doses, the system is given more free- statistic analysis approach.
dom for self-adjustment. As a benefit, a solution with a
higher integral target dose and reduced OAR dose can be B. The prostate case
obtained from the expanded solution space.

We have also studied the behavior of the system when a The new inverse planning algorithm was also applied to
range of doses is prescribed to the OAR. In this investiga- study a six filed IMRT prostate treatment [Fig. 8(a)]. Four
tion, we kept the target prescription to 100 and allowed the plans with different types of preference functions were gen-
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A "

FiG. 8. A transverse slice showing the anatomical struc-
tures delineated for the prostate tumor (a) and (b) the
dose distribution obtained using the "probabilistic"
prescription shown in Fig. 9(a).
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erated. In addition, a plan with rigid prescription (74 Gy on the high dose region [Fig. 9(b)] when a bell-shaped prefer-
the target, 60 Gy on the bladder, and 40 Gy on the rectum) is ence function was used with more emphasis on the target
also generated. The DVHs for this plan is plotted as dotted receiving doses at 74, 76, and 78 Gy. In both cases, doses to
lines in Fig. 9 and is used as a reference for comparison. In the rectum and bladder did not change significantly.

all treatment plans, six beams were placed at the following In Fig. 9(c) we show the DVHs when the preference func-
angular positions: 0', 550, 1350, 180', 2250, and 3050. The tion to the rectum deviates from the uniform distribution. As
size of the pencil beam defined at the isocenter was 0.5 cm. a result, the rectum dose was significantly lowered in all dose

The DVH and preference functions for four different levels and the maximum dose was reduced from 66 to 57 Gy.

plans are schematically shown in Fig. 9. In the study shown Because of the proximity of the rectum to the prostate target,
in Figs. 9(a)-9(b), we kept the preference function of the the maximum rectum dose was not restricted to 30 Gy, as
sensitive structures unchanged and only varied the form of specified in the preference function. We emphasize that the

the preference function of the target. In Fig. 9(a), we as- improvement in rectum and bladder sparing was achieved at
sumed that target could take seven discrete values (74, 76, cost of higher dose inhomogeneity in the prostate target. This
78, 80, 82, 84, and 86 Gy) sampled from an exponential reminds us that, in dose optimization, there is a dosimetric
distribution. Compared with the dotted lines, the target DVH compromise. That is, the improvement in the dose to a struc-
was shifted toward the high dose direction. The dose distri- ture is often accompanied by dosimetrically adverse effect(s)
bution corresponding to the preference function is shown in at other points in the same or different structures. The impor-
Fig. 8(b). The target DVH was shifted even further toward tant point that one should note is that from the clinical point
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